With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and fut...With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and future potential of 3D printing technology in dental medicine and to analyze its benefits and challenges.It first introduces the current state of 3D printing technology in dental implants,crowns,bridges,orthodontics,and maxillofacial surgery.It then discusses the potential applications of 3D printing technology in oral tissue engineering,drug delivery systems,personalized dental prosthetics,and surgical planning.Finally,it analyzes the benefits of 3D printing technology in dental medicine,such as improving treatment accuracy and patient comfort,and shortening treatment times,while also highlighting the challenges faced,such as costs,material choices,and technical limitations.This article aims to provide a reference for professionals in the field of dental medicine and to promote the further application and development of 3D printing technology in this area.展开更多
The application of virtual reality technology has become more and more influential in garden design. Quest3D as a significant software to realize the virtual reality technology is utilized in this study to make a gard...The application of virtual reality technology has become more and more influential in garden design. Quest3D as a significant software to realize the virtual reality technology is utilized in this study to make a garden roaming demonstration system with the gardening design of a classical courtyard as an example. Besides, the advantages and disadvantages of applying Quest3D technology in garden landscape design are elaborated from the perspective of the selection of Quest3D technology, basic procedures for the selection and establishment of software and hardware.展开更多
In order to study the successive deposition and solidification processes of uniform alloy droplets during the drop-on-demand three dimensional(3D) printing method,based on the volume of fluid(VOF) method,a 3D nume...In order to study the successive deposition and solidification processes of uniform alloy droplets during the drop-on-demand three dimensional(3D) printing method,based on the volume of fluid(VOF) method,a 3D numerical model was employed.In this model,the 7075 alloy with larger temperature range for phase change was used.The simulation results show that the successive deposition and solidification processes of uniform 7075 alloy droplets can be well characterized by this model.Simulated droplets shapes agree well with SEM images under the same condition.The effects of deposition and solidification of droplets result in vertical and L-shaped ridges on the surface of droplets,and tips of dendrites appear near the overlap of droplets due to rapid solidification.展开更多
A liquid Li divertor is a promising alternative for future fusion devices.In this work a new divertor model is proposed,which is processed by 3D-printing technology to accurately control the size of the internal capil...A liquid Li divertor is a promising alternative for future fusion devices.In this work a new divertor model is proposed,which is processed by 3D-printing technology to accurately control the size of the internal capillary structure.At a steady-state heat load of 10 MW m^(-2),the thermal stress of the tungsten target is within the bearing range of tungsten by finite-element simulation.In order to evaluate the wicking ability of the capillary structure,the wicking process at 600℃ was simulated by FLUENT.The result was identical to that of the corresponding experiments.Within 1 s,liquid lithium was wicked to the target surface by the capillary structure of the target and quickly spread on the target surface.During the wicking process,the average wicking mass rate of lithium should reach 0.062 g s^(-1),which could even supplement the evaporation requirement of liquid lithium under an environment>950℃.Irradiation experiments under different plasma discharge currents were carried out in a linear plasma device(SCU-PSI),and the evolution of the vapor cloud during plasma irradiation was analyzed.It was found that the target temperature tends to plateau despite the gradually increased input current,indicating that the vapor shielding effect is gradually enhanced.The irradiation experiment also confirmed that the 3D-printed tungsten structure has better heat consumption performance than a tungsten mesh structure or multichannel structure.These results reveal the application potential and feasibility of a 3D-printed porous capillary structure in plasma-facing components and provide a reference for further liquid-solid combined target designs.展开更多
Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailora...Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.展开更多
The degradation and mineralization of aniline (AN) using ozone combined with Fenton reagent (O3/Fenton) in a rotating packed bed (RPB) was proposed in this study, and the process (RPB-O3/Fenton) was compared w...The degradation and mineralization of aniline (AN) using ozone combined with Fenton reagent (O3/Fenton) in a rotating packed bed (RPB) was proposed in this study, and the process (RPB-O3/Fenton) was compared with conventional O3/Fenton in a stirred tank reactor (STR-O3/Fenton) or single ozonation in an RPB (RPB-O3), Effects of high gravity factor, H2O2 dosage, H2O2 dosing method and initial pH on the AN mineralization efficiency were investigated in the RPB-O3/Fenton process, In addition, the behavior of Fe(Ⅱ) was monitored at different H2O2 dosing methods and pH values. Finally, the optimal operation conditions were determined with high gravity factor of 100, initial pH of 5, Fe(Ⅱ) concentration of 0.8 mmol·L-1 and H2O2 dosage of 2.5 ml. Under these conditions, for aniline wastewater at the volume of I L and concentration of 200 mg· L- 1 ,a fast and thorough decay of AN was conducted in 10 min, and the TOC removal efficiency reached 89% in 60 min. The main intermediates of p-benzoquinone, nitrobenzene, maleic acid and oxalic acid were identified by liquid chromatography/mass spectroscopy (LC/MS), and the degradation pathways of AN in RPB-O3/Fenton system were proposed based on experimental evidence. It could be envisioned that high-gravity technology combined with O3/Fenton processes would be promising in the rapid and efficient mineralization ofwastewater.展开更多
In this work,we reported a series of monolithic 3D-printed Ni-Mo alloy electrodes for highly efficient water splitting at high current density(1500 mA cm^(-2))with excellent stability,which provides a solution to scal...In this work,we reported a series of monolithic 3D-printed Ni-Mo alloy electrodes for highly efficient water splitting at high current density(1500 mA cm^(-2))with excellent stability,which provides a solution to scale up Ni-Mo catalysts for HER to industry use.All possible Ni-Mo metal/alloy phases were achieved by tuning the atomic composition and heat treatment procedure,and they were investigated through both experiment and simulation,and the optimal NiMo phase shows the best performance.Density functional theory(DFT)calculations elucidate that the NiMo phase has the lowest H2O dissociation energy,which further explains the exceptional performance of NiMo.In addition,the microporosity was modulated via controlled thermal treatment,indicating that the 1100℃sintered sample has the best catalytic performance,which is attributed to the high electrochemically active surface area(ECSA).Finally,the four different macrostructures were achieved by 3D printing,and they further improved the catalytic performance.The gyroid structure exhibits the best catalytic performance of driving 500 mA cm^(-2)at a low overpotential of 228 mV and 1500 mA cm^(-2)at 325 mV,as it maximizes the efficient bubble removal from the electrode surface,which offers the great potential for high current density water splitting.展开更多
Based on field survey located by GPS, it is obtained landslides' location and distribution information by the method of remote sensing in this paper. The vector data of environmental factors that breed and induce lan...Based on field survey located by GPS, it is obtained landslides' location and distribution information by the method of remote sensing in this paper. The vector data of environmental factors that breed and induce landslides such as the elevation, the slope, the vegetation cover, the lithology, the rainfall and so on are gained using GIS(geographical information system) techniques of spatial analysis. All the data obtained are managed through building landslide management system. At the same time, the system is made the platform to appraise the relationship between the distribution of landslides and the environmental factors. The results indicate: landslides take place relatively easily in the slope range between 10° and 25°; most landslides are in the mixed area of bush and grass with a coverage degree of from 20° to 65°; the distribution of landslides has a positive relationship with the distribution of annual rainfall. The risk degree of Panxi Area is zoned and mapped by the model of liner stack using GIS technique, and the result indicates: the place of high risk degree is the belt of Panzhihua-Miyi-Dechang-Mugu and southeast of Huili county and Huidong county,and area is about 512 707 hm^2.展开更多
In this study, whole-oil gas chromatographic fingerprint analyses were performed on oils from the Es3^3 reservoir in the Liubei area of the Nanpu Sag. The gas chromatographic peaks of cyclic and branched alkanes with ...In this study, whole-oil gas chromatographic fingerprint analyses were performed on oils from the Es3^3 reservoir in the Liubei area of the Nanpu Sag. The gas chromatographic peaks of cyclic and branched alkanes with relatively high resolution from nCl0 to nC25 were selected to establish a database of whole-oil gas chromatographic peak height ratio fingerprints. Reservoir fluid connectivity was identified by using clustering analysis. This method can reflect the gas chromatography fingerprint information accurately and entirely, and avoid the one-sidedness of the star diagram method which only selects several fixed gas chromatographic peaks.展开更多
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor...In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.展开更多
Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent...Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.展开更多
A fully automated approach for detecting land use/cover change using remote sensing data, GIS data, GPS data is presented. The integrating raster with vector methods of updating the basic land use/land cover map based...A fully automated approach for detecting land use/cover change using remote sensing data, GIS data, GPS data is presented. The integrating raster with vector methods of updating the basic land use/land cover map based on 3S technology is becoming one of the most important developing directions in 3S application fields, land-use and cover change fields over the world. It has been successful applied in two tasks of the Ministry of Land and Resources of China, and takes some benefit.展开更多
3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment,and this technology is also beginning to cut a striking figure in casting industry and scientific research...3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment,and this technology is also beginning to cut a striking figure in casting industry and scientific research.The history,fundamental principle,and devices of 3D stereoscopic visualization technology are reviewed in this paper.The authors’research achievements on the 3D stereoscopic visualization technology in the modeling and simulation of the casting process are presented.This technology can be used for the observation of complex 3D solid models of castings and the simulated results of solidification processes such as temperature,fluid flow,displacement,stress strain and microstructure,as well as the predicted defects such as shrinkage/porosity,cracks,and deformation.It can also be used for other areas relating to 3D models,such as assembling of dies,cores,etc.Several cases are given to compare the illustration of simulated results by traditional images and red-blue 3D stereoscopic images.The spatial shape is observed better by the new method.The prospect of3D stereoscopic visualization in the casting aspect is discussed as well.The need for aided-viewing devices is still the most prominent problem of 3D stereoscopic visualization technology.However,3D stereoscopic visualization represents the tendency of visualization technology in the future;and as the problem is solved in the years ahead,great breakthroughs will certainly be made for its application in casting design and modeling and simulation of the casting processes.展开更多
In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent techno...In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent technology education and digital reform,the combination of virtual reality and campus management is the need for innovative thinking and economic and social development,and then better change our learning style and living environment.The construction of the digital campus is based on virtual reality technology,BIM,GIS,and three-dimensional modeling technology to provide an immersive platform for students,promote the integration of virtual reality technology and education,help teachers,students,and parents to understand all kinds of education information and resources,to achieve their interoperability.From the off-campus environment to the school teaching equipment,teachers to teaching quality certification,and learning,to extracurricular entertainment,opening ceremonies to graduation parties,to bring more efficient,convenient,and safe campus life for teachers,students,and staff in school,and break the traditional information restrictions.展开更多
With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to t...With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.展开更多
Remote sensing,geographic information system and GPS(3S)technology have been well recognized as comprehensive,accurate and up-to-date information collection methods,which are increasingly adopted in biodiversity conse...Remote sensing,geographic information system and GPS(3S)technology have been well recognized as comprehensive,accurate and up-to-date information collection methods,which are increasingly adopted in biodiversity conservation.This review summarizes the application of object-oriented classification methods on biodiversity monitoring projects based on high-resolution remote sensing imagines in China.Biodiversity conservation research based on GIS technology in China is also discussed,with emphasis on the advantages of GIS analysis and modeling function.展开更多
3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body...3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.展开更多
The self-reinforced Si_3N_4 ceramics which contain Y_2O_3 and La_2O_3 additives have been prepared by hot-pressing. Under the optimum processing conditions, this material has the flexural strength of 960~1050MPa and ...The self-reinforced Si_3N_4 ceramics which contain Y_2O_3 and La_2O_3 additives have been prepared by hot-pressing. Under the optimum processing conditions, this material has the flexural strength of 960~1050MPa and the fracture toughness of 11.17~12.74MPa·m^(1/2) at room-temperature, and 720~780MPa and 22~24MPa·m^(1/2) at 1350℃. The effects of heat ing rate, sintering temperature, and holding time on the microstructures and mechanical properties are investigated. The experimental results show that an appropriate β-Si_3N_4 grain size and homogeneous microstructure can be obtained under the conditions of a heating rate of 10℃/min, sintering temperature of 1800℃, and holding time of 1h, which are advantageous to enhancing the mechanical properties. Crack deflection in large rodlike β-Si_3N_4 grains is a principle source of toughening.展开更多
As advanced functional materials,piezoelectric ceramics are widely used in various fields,including the medical,aviation,and military industries.With the advancement of science and technology,the piezoelectric ceramic...As advanced functional materials,piezoelectric ceramics are widely used in various fields,including the medical,aviation,and military industries.With the advancement of science and technology,the piezoelectric ceramics needed in special fields have become more intelligent,diverse and lightweight.The shapes and structures of piezoelectric ceramics are becoming more complex.Traditional piezoelectric ceramic preparation technology has been unable to meet the high-speed and complex production demands of various industries.Considering this situation,3D printing technology has attracted much attention in the field of piezoelectric ceramics.In this paper,the applications of several main 3D printing techniques in the field of piezoelectric ceramics are mainly introduced,and their development statuses,process characteristics and achievements are summarized.The advantages and disadvantages of each printing technique are summarized and compared.The challenges and possible future trends of 3D printing when manufacturing piezoelectric ceramics are summarized and proposed.展开更多
Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and princi...Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and principle of the two-gateways parallel 3-D electrical technology and the arrangement of the observation system. The authors use this method to detect the water under the floor of a mine in north of Anhui. The results show that the two-gateways parallel 3-D electrical technology can accurately locate the water-rich areas, providing the basis for drilling drainage and grouting construction.展开更多
文摘With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and future potential of 3D printing technology in dental medicine and to analyze its benefits and challenges.It first introduces the current state of 3D printing technology in dental implants,crowns,bridges,orthodontics,and maxillofacial surgery.It then discusses the potential applications of 3D printing technology in oral tissue engineering,drug delivery systems,personalized dental prosthetics,and surgical planning.Finally,it analyzes the benefits of 3D printing technology in dental medicine,such as improving treatment accuracy and patient comfort,and shortening treatment times,while also highlighting the challenges faced,such as costs,material choices,and technical limitations.This article aims to provide a reference for professionals in the field of dental medicine and to promote the further application and development of 3D printing technology in this area.
文摘The application of virtual reality technology has become more and more influential in garden design. Quest3D as a significant software to realize the virtual reality technology is utilized in this study to make a garden roaming demonstration system with the gardening design of a classical courtyard as an example. Besides, the advantages and disadvantages of applying Quest3D technology in garden landscape design are elaborated from the perspective of the selection of Quest3D technology, basic procedures for the selection and establishment of software and hardware.
基金Projects (51005186,51221001) supported by the National Natural Science Foundation of ChinaProject (85-TZ-2013) supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject (20126102110022) supported by the Doctoral Fund of Ministry of Education of China
文摘In order to study the successive deposition and solidification processes of uniform alloy droplets during the drop-on-demand three dimensional(3D) printing method,based on the volume of fluid(VOF) method,a 3D numerical model was employed.In this model,the 7075 alloy with larger temperature range for phase change was used.The simulation results show that the successive deposition and solidification processes of uniform 7075 alloy droplets can be well characterized by this model.Simulated droplets shapes agree well with SEM images under the same condition.The effects of deposition and solidification of droplets result in vertical and L-shaped ridges on the surface of droplets,and tips of dendrites appear near the overlap of droplets due to rapid solidification.
基金funded by the China Postdoctoral Science Foundation(No.2019M663487)the National Key Research and Development Program of China(No.2022YFE03130000)。
文摘A liquid Li divertor is a promising alternative for future fusion devices.In this work a new divertor model is proposed,which is processed by 3D-printing technology to accurately control the size of the internal capillary structure.At a steady-state heat load of 10 MW m^(-2),the thermal stress of the tungsten target is within the bearing range of tungsten by finite-element simulation.In order to evaluate the wicking ability of the capillary structure,the wicking process at 600℃ was simulated by FLUENT.The result was identical to that of the corresponding experiments.Within 1 s,liquid lithium was wicked to the target surface by the capillary structure of the target and quickly spread on the target surface.During the wicking process,the average wicking mass rate of lithium should reach 0.062 g s^(-1),which could even supplement the evaporation requirement of liquid lithium under an environment>950℃.Irradiation experiments under different plasma discharge currents were carried out in a linear plasma device(SCU-PSI),and the evolution of the vapor cloud during plasma irradiation was analyzed.It was found that the target temperature tends to plateau despite the gradually increased input current,indicating that the vapor shielding effect is gradually enhanced.The irradiation experiment also confirmed that the 3D-printed tungsten structure has better heat consumption performance than a tungsten mesh structure or multichannel structure.These results reveal the application potential and feasibility of a 3D-printed porous capillary structure in plasma-facing components and provide a reference for further liquid-solid combined target designs.
文摘Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.
基金Supported by the National Natural Science Foundations of China(U1610106)Shanxi Excellent Talent Science and Technology Innovation Project(201705D211011)+1 种基金Specialized Research Fund for Sanjin Scholars Program of Shanxi ProvinceNorth University of China Fund for Distinguished Young Scholars
文摘The degradation and mineralization of aniline (AN) using ozone combined with Fenton reagent (O3/Fenton) in a rotating packed bed (RPB) was proposed in this study, and the process (RPB-O3/Fenton) was compared with conventional O3/Fenton in a stirred tank reactor (STR-O3/Fenton) or single ozonation in an RPB (RPB-O3), Effects of high gravity factor, H2O2 dosage, H2O2 dosing method and initial pH on the AN mineralization efficiency were investigated in the RPB-O3/Fenton process, In addition, the behavior of Fe(Ⅱ) was monitored at different H2O2 dosing methods and pH values. Finally, the optimal operation conditions were determined with high gravity factor of 100, initial pH of 5, Fe(Ⅱ) concentration of 0.8 mmol·L-1 and H2O2 dosage of 2.5 ml. Under these conditions, for aniline wastewater at the volume of I L and concentration of 200 mg· L- 1 ,a fast and thorough decay of AN was conducted in 10 min, and the TOC removal efficiency reached 89% in 60 min. The main intermediates of p-benzoquinone, nitrobenzene, maleic acid and oxalic acid were identified by liquid chromatography/mass spectroscopy (LC/MS), and the degradation pathways of AN in RPB-O3/Fenton system were proposed based on experimental evidence. It could be envisioned that high-gravity technology combined with O3/Fenton processes would be promising in the rapid and efficient mineralization ofwastewater.
文摘In this work,we reported a series of monolithic 3D-printed Ni-Mo alloy electrodes for highly efficient water splitting at high current density(1500 mA cm^(-2))with excellent stability,which provides a solution to scale up Ni-Mo catalysts for HER to industry use.All possible Ni-Mo metal/alloy phases were achieved by tuning the atomic composition and heat treatment procedure,and they were investigated through both experiment and simulation,and the optimal NiMo phase shows the best performance.Density functional theory(DFT)calculations elucidate that the NiMo phase has the lowest H2O dissociation energy,which further explains the exceptional performance of NiMo.In addition,the microporosity was modulated via controlled thermal treatment,indicating that the 1100℃sintered sample has the best catalytic performance,which is attributed to the high electrochemically active surface area(ECSA).Finally,the four different macrostructures were achieved by 3D printing,and they further improved the catalytic performance.The gyroid structure exhibits the best catalytic performance of driving 500 mA cm^(-2)at a low overpotential of 228 mV and 1500 mA cm^(-2)at 325 mV,as it maximizes the efficient bubble removal from the electrode surface,which offers the great potential for high current density water splitting.
文摘Based on field survey located by GPS, it is obtained landslides' location and distribution information by the method of remote sensing in this paper. The vector data of environmental factors that breed and induce landslides such as the elevation, the slope, the vegetation cover, the lithology, the rainfall and so on are gained using GIS(geographical information system) techniques of spatial analysis. All the data obtained are managed through building landslide management system. At the same time, the system is made the platform to appraise the relationship between the distribution of landslides and the environmental factors. The results indicate: landslides take place relatively easily in the slope range between 10° and 25°; most landslides are in the mixed area of bush and grass with a coverage degree of from 20° to 65°; the distribution of landslides has a positive relationship with the distribution of annual rainfall. The risk degree of Panxi Area is zoned and mapped by the model of liner stack using GIS technique, and the result indicates: the place of high risk degree is the belt of Panzhihua-Miyi-Dechang-Mugu and southeast of Huili county and Huidong county,and area is about 512 707 hm^2.
基金funded by Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (Project DMSM201009)Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education, China (Project TPR-2010-29)
文摘In this study, whole-oil gas chromatographic fingerprint analyses were performed on oils from the Es3^3 reservoir in the Liubei area of the Nanpu Sag. The gas chromatographic peaks of cyclic and branched alkanes with relatively high resolution from nCl0 to nC25 were selected to establish a database of whole-oil gas chromatographic peak height ratio fingerprints. Reservoir fluid connectivity was identified by using clustering analysis. This method can reflect the gas chromatography fingerprint information accurately and entirely, and avoid the one-sidedness of the star diagram method which only selects several fixed gas chromatographic peaks.
基金supported by the National Natural Science Foundation of China (Grant No. U1934211)the Open Foundation of National Engineering Research Center of High-speed Railway Construction Technology (Grant No. HSR202005)Scientific Research Project of Hunan Education Department (Grant No.20B596)。
文摘In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.
基金the support of the National Natural Science Foundation of China(Grant Nos.42207199,52179113,42272333)Zhejiang Postdoctoral Scientific Research Project(Grant Nos.ZJ2022155,ZJ2022156)。
文摘Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.
文摘A fully automated approach for detecting land use/cover change using remote sensing data, GIS data, GPS data is presented. The integrating raster with vector methods of updating the basic land use/land cover map based on 3S technology is becoming one of the most important developing directions in 3S application fields, land-use and cover change fields over the world. It has been successful applied in two tasks of the Ministry of Land and Resources of China, and takes some benefit.
文摘3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment,and this technology is also beginning to cut a striking figure in casting industry and scientific research.The history,fundamental principle,and devices of 3D stereoscopic visualization technology are reviewed in this paper.The authors’research achievements on the 3D stereoscopic visualization technology in the modeling and simulation of the casting process are presented.This technology can be used for the observation of complex 3D solid models of castings and the simulated results of solidification processes such as temperature,fluid flow,displacement,stress strain and microstructure,as well as the predicted defects such as shrinkage/porosity,cracks,and deformation.It can also be used for other areas relating to 3D models,such as assembling of dies,cores,etc.Several cases are given to compare the illustration of simulated results by traditional images and red-blue 3D stereoscopic images.The spatial shape is observed better by the new method.The prospect of3D stereoscopic visualization in the casting aspect is discussed as well.The need for aided-viewing devices is still the most prominent problem of 3D stereoscopic visualization technology.However,3D stereoscopic visualization represents the tendency of visualization technology in the future;and as the problem is solved in the years ahead,great breakthroughs will certainly be made for its application in casting design and modeling and simulation of the casting processes.
文摘In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent technology education and digital reform,the combination of virtual reality and campus management is the need for innovative thinking and economic and social development,and then better change our learning style and living environment.The construction of the digital campus is based on virtual reality technology,BIM,GIS,and three-dimensional modeling technology to provide an immersive platform for students,promote the integration of virtual reality technology and education,help teachers,students,and parents to understand all kinds of education information and resources,to achieve their interoperability.From the off-campus environment to the school teaching equipment,teachers to teaching quality certification,and learning,to extracurricular entertainment,opening ceremonies to graduation parties,to bring more efficient,convenient,and safe campus life for teachers,students,and staff in school,and break the traditional information restrictions.
文摘With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.
文摘Remote sensing,geographic information system and GPS(3S)technology have been well recognized as comprehensive,accurate and up-to-date information collection methods,which are increasingly adopted in biodiversity conservation.This review summarizes the application of object-oriented classification methods on biodiversity monitoring projects based on high-resolution remote sensing imagines in China.Biodiversity conservation research based on GIS technology in China is also discussed,with emphasis on the advantages of GIS analysis and modeling function.
基金item of significant subject construction in Shanghai
文摘3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.
基金Supported by China Postdoctoral Science Foundation
文摘The self-reinforced Si_3N_4 ceramics which contain Y_2O_3 and La_2O_3 additives have been prepared by hot-pressing. Under the optimum processing conditions, this material has the flexural strength of 960~1050MPa and the fracture toughness of 11.17~12.74MPa·m^(1/2) at room-temperature, and 720~780MPa and 22~24MPa·m^(1/2) at 1350℃. The effects of heat ing rate, sintering temperature, and holding time on the microstructures and mechanical properties are investigated. The experimental results show that an appropriate β-Si_3N_4 grain size and homogeneous microstructure can be obtained under the conditions of a heating rate of 10℃/min, sintering temperature of 1800℃, and holding time of 1h, which are advantageous to enhancing the mechanical properties. Crack deflection in large rodlike β-Si_3N_4 grains is a principle source of toughening.
基金This work was financially supported by the Scientific Research Fund-ing Project of the Educational Department of Liaoning Province in 2020,grant number LQ2020008.
文摘As advanced functional materials,piezoelectric ceramics are widely used in various fields,including the medical,aviation,and military industries.With the advancement of science and technology,the piezoelectric ceramics needed in special fields have become more intelligent,diverse and lightweight.The shapes and structures of piezoelectric ceramics are becoming more complex.Traditional piezoelectric ceramic preparation technology has been unable to meet the high-speed and complex production demands of various industries.Considering this situation,3D printing technology has attracted much attention in the field of piezoelectric ceramics.In this paper,the applications of several main 3D printing techniques in the field of piezoelectric ceramics are mainly introduced,and their development statuses,process characteristics and achievements are summarized.The advantages and disadvantages of each printing technique are summarized and compared.The challenges and possible future trends of 3D printing when manufacturing piezoelectric ceramics are summarized and proposed.
文摘Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and principle of the two-gateways parallel 3-D electrical technology and the arrangement of the observation system. The authors use this method to detect the water under the floor of a mine in north of Anhui. The results show that the two-gateways parallel 3-D electrical technology can accurately locate the water-rich areas, providing the basis for drilling drainage and grouting construction.