Objective To investigate reductive dechlorination of 4-chlorophenol (4-CP) by nanoscale Fe^0 under different conditions. Methods Nanoscale Fe^0 was synthesized by using reductive method. 4-CP and its intermediate pr...Objective To investigate reductive dechlorination of 4-chlorophenol (4-CP) by nanoscale Fe^0 under different conditions. Methods Nanoscale Fe^0 was synthesized by using reductive method. 4-CP and its intermediate products were analyzed by HPLC. Chlorine ion was quantified with DX-100 ion chromatograph. Nano-iron particles were observed under a FEI Quanta 200 FEG environmental scanning electron microscope (ESEM). Results The size of the particles was in the range of 10-100 nm. The nano-iron particles could reduce 4-CP effectively. The initial concentration of 4-CP increased with the decrease of the relative degradation rate, whereas the reduced amount of 4-CP increased. Temperature could influence both the dechlorination rate and the reaction pathway. Moreover, the stability and durability of nanoscale Fe^0 was evaluated through batch studies over extended periods of time. Conclusion The nanoscale Fe^0 can be used for sustainable treatment of contaminants in groundwater.展开更多
基金The work was supported by the National Natural Science Foundation of China (Grant No. 50325824 50678089).
文摘Objective To investigate reductive dechlorination of 4-chlorophenol (4-CP) by nanoscale Fe^0 under different conditions. Methods Nanoscale Fe^0 was synthesized by using reductive method. 4-CP and its intermediate products were analyzed by HPLC. Chlorine ion was quantified with DX-100 ion chromatograph. Nano-iron particles were observed under a FEI Quanta 200 FEG environmental scanning electron microscope (ESEM). Results The size of the particles was in the range of 10-100 nm. The nano-iron particles could reduce 4-CP effectively. The initial concentration of 4-CP increased with the decrease of the relative degradation rate, whereas the reduced amount of 4-CP increased. Temperature could influence both the dechlorination rate and the reaction pathway. Moreover, the stability and durability of nanoscale Fe^0 was evaluated through batch studies over extended periods of time. Conclusion The nanoscale Fe^0 can be used for sustainable treatment of contaminants in groundwater.