Tolylene-2,4-diisocyanate(2,4-TDI) 1 reacts with methanol through two simultaneous paths in the polyurethane reaction,which involve two different intermediates-tolylene-4-carbamatic-2-isocyanate 2 and tolylene-2-car...Tolylene-2,4-diisocyanate(2,4-TDI) 1 reacts with methanol through two simultaneous paths in the polyurethane reaction,which involve two different intermediates-tolylene-4-carbamatic-2-isocyanate 2 and tolylene-2-carbamatic-4-isocyanate 3,and the final product is tolylene-2,4-dicarbamate 4.The-CH_3 chemical shifts in benzene ring in compounds 1,2,3 and 4 can be easily tested and well distinguished,through which those four compounds are quantified and their kinetics are investigated.It shows that four rate constants for the tolylene-2,4-diisocyanate-methanol reaction in CCl_4 at 50℃are k_1=9.6×10^(-2)h^(-2)mol^(-2)min^(-1), k_2=1.4×10^(-2)h^(-2)mol^(-2)min^(-1),k_3=4.0×10^(-3)h^(-2)mol^(-2)min^(-1),k_4=1.4×10^(-3)h^(-2)mol^(-2)min^(-1).(k_1 is the reaction rate constant from compounds 1 to 2;k_2 is the reaction rate constant from compounds 1 to 3;k_3 is the reaction rate constant from compounds 3 to 4;k_4 is the reaction rate constant from compounds 2 to 4).展开更多
The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for i...The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for indirect utilization of CO2 to produce hexamethylene-1,6-diisocyanate (HDI). In this work, a green route was developed for the synthesis of HD1 by thermal decomposition of HDC over Co3O4/ZSM-5 catalyst, using chlorobenzene as low boiling point solvent. Different metal oxide supported catalysts were prepared by incipient wetness impregnation (IWI), PEG-additive (PEG) and deposition precipitation with ammonia evaporation (DP) methods. Their catalytic performances for the thermal decomposition of HDC were tested. The catalyst screening results showed that Co3O4/ZSM-525 catalysts prepared by different methods showed different performances in the order of Co3O4/ZSM-5 25(PEG) 〉 Co3O4/ZSM-525(IWI) 〉 Co3O4/ZSM-525(DP). The physicochemical properties of Co3O4/ZSM- 52s catalyst were characterized by XRD, FTIR, N2 adsorption-desorption measurements, NH3-TPD and XPS. The superior catalytic performance of Co3O4/ZSM-52S(PEG) catalyst was attributed to its relative surface content of Co3 +, surface lattice oxygen content and total acidity. Under the optimized reaction conditions: 6.5% HDC concentration in chlorobenzene, 1 wt% Co3O4/ZSM-525(PEG) catalyst, 250℃ temperature, 2.5 h time, 800 ml.min 1 nitrogen flow rate and 1.0 MPa pressure, the HDC conversion and HDI yield could reach 100% and 92.8% respectively. The Co3O4/ZSM-525(PEG) catalyst could be facilely separated from the reaction mixture, and reused without degradation in catalytic performance. Furthermore, a possible reaction mechanism was proposed based on the physicochemical properties of the Co3O4/ZSM-5 25 catalysts.展开更多
The double Michael reactions between benzofuran-3-one or 1-indone and symmetric dienones in the presence of catalytic ionic liquids were successfully developed and spiro[benzofuran-2, 1′-cyclohexane]-3-one or spiro[c...The double Michael reactions between benzofuran-3-one or 1-indone and symmetric dienones in the presence of catalytic ionic liquids were successfully developed and spiro[benzofuran-2, 1′-cyclohexane]-3-one or spiro[cyclo- hexane-1,2′-indene]-1′,4(3′H)-dione derivatives containing a spiro quaternary stereogenic center, which widely exist in biologically active products and building blocks in organic synthesis, were obtained in excellent yields (up to 99%). This catalytic system was also extended to the double Michael reaction of less reactive 1-indone and the desired products were also obtained in 31%-62% yields. The catalytic system was highly active and efficient for a broad of substrates under mild conditions.展开更多
基金the financial support from the National Natural Science Foundation of China(No. 20676074)the National Natural Science Foundation of Shandong Province(No.Y2004B04).
文摘Tolylene-2,4-diisocyanate(2,4-TDI) 1 reacts with methanol through two simultaneous paths in the polyurethane reaction,which involve two different intermediates-tolylene-4-carbamatic-2-isocyanate 2 and tolylene-2-carbamatic-4-isocyanate 3,and the final product is tolylene-2,4-dicarbamate 4.The-CH_3 chemical shifts in benzene ring in compounds 1,2,3 and 4 can be easily tested and well distinguished,through which those four compounds are quantified and their kinetics are investigated.It shows that four rate constants for the tolylene-2,4-diisocyanate-methanol reaction in CCl_4 at 50℃are k_1=9.6×10^(-2)h^(-2)mol^(-2)min^(-1), k_2=1.4×10^(-2)h^(-2)mol^(-2)min^(-1),k_3=4.0×10^(-3)h^(-2)mol^(-2)min^(-1),k_4=1.4×10^(-3)h^(-2)mol^(-2)min^(-1).(k_1 is the reaction rate constant from compounds 1 to 2;k_2 is the reaction rate constant from compounds 1 to 3;k_3 is the reaction rate constant from compounds 3 to 4;k_4 is the reaction rate constant from compounds 2 to 4).
基金National Natural Science Foundation of China(21476244 and 21406245)Youth Innovation Promotion Association CAS
文摘The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for indirect utilization of CO2 to produce hexamethylene-1,6-diisocyanate (HDI). In this work, a green route was developed for the synthesis of HD1 by thermal decomposition of HDC over Co3O4/ZSM-5 catalyst, using chlorobenzene as low boiling point solvent. Different metal oxide supported catalysts were prepared by incipient wetness impregnation (IWI), PEG-additive (PEG) and deposition precipitation with ammonia evaporation (DP) methods. Their catalytic performances for the thermal decomposition of HDC were tested. The catalyst screening results showed that Co3O4/ZSM-525 catalysts prepared by different methods showed different performances in the order of Co3O4/ZSM-5 25(PEG) 〉 Co3O4/ZSM-525(IWI) 〉 Co3O4/ZSM-525(DP). The physicochemical properties of Co3O4/ZSM- 52s catalyst were characterized by XRD, FTIR, N2 adsorption-desorption measurements, NH3-TPD and XPS. The superior catalytic performance of Co3O4/ZSM-52S(PEG) catalyst was attributed to its relative surface content of Co3 +, surface lattice oxygen content and total acidity. Under the optimized reaction conditions: 6.5% HDC concentration in chlorobenzene, 1 wt% Co3O4/ZSM-525(PEG) catalyst, 250℃ temperature, 2.5 h time, 800 ml.min 1 nitrogen flow rate and 1.0 MPa pressure, the HDC conversion and HDI yield could reach 100% and 92.8% respectively. The Co3O4/ZSM-525(PEG) catalyst could be facilely separated from the reaction mixture, and reused without degradation in catalytic performance. Furthermore, a possible reaction mechanism was proposed based on the physicochemical properties of the Co3O4/ZSM-5 25 catalysts.
文摘The double Michael reactions between benzofuran-3-one or 1-indone and symmetric dienones in the presence of catalytic ionic liquids were successfully developed and spiro[benzofuran-2, 1′-cyclohexane]-3-one or spiro[cyclo- hexane-1,2′-indene]-1′,4(3′H)-dione derivatives containing a spiro quaternary stereogenic center, which widely exist in biologically active products and building blocks in organic synthesis, were obtained in excellent yields (up to 99%). This catalytic system was also extended to the double Michael reaction of less reactive 1-indone and the desired products were also obtained in 31%-62% yields. The catalytic system was highly active and efficient for a broad of substrates under mild conditions.