This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and wind...This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments--assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function--are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line-- including the surface warm inflow, cold pool, gust front, and low-level wind--are much closer to the observations after assimilating the surface data in VDRAS.展开更多
Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread atte...Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.展开更多
The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).A...The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).Alternatively,physical space analysis system(4D-PSAS)is proposed to reduce the computation cost,in which the 4D-Var problem is solved in physical space(i.e.,observation space).In this study,the conjugate gradient(CG)algorithm,implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process.The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed.In order to overcome the non-monotonic variation of gradient norm,a new algorithm,Minimum Residual(MINRES)algorithm,is implemented in the process of assimilation iteration in this study.Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function,greatly improves the convergence properties of 4D-PSAS as well,and significantly restrains the numerical noises associated with the traditional 4D-PSAS system.展开更多
The impact of diabatic processes on 4-dimensional variational data assimilation (4D-Var) was studied using the 1995 version of NCEP's global spectral model with and without full physics.The adjoint was coded manua...The impact of diabatic processes on 4-dimensional variational data assimilation (4D-Var) was studied using the 1995 version of NCEP's global spectral model with and without full physics.The adjoint was coded manually.A cost function measuring spectral errors of 6-hour forecasts to 'observation' (the NCEP reanalysis data) was minimized using the L-BFGS (the limited memory quasi-Newton algorithm developed by Broyden,Fletcher,Goldfard and Shanno) for optimizing parameters and initial conditions.Minimization of the cost function constrained by an adiabatic version of the NCEP global model converged to a minimum with a significant amount of decrease in the value of the cost function.Minimization of the cost function using the diabatic model, however,failed after a few iterations due to discontinuities introduced by physical parameterizations.Examination of the convergence of the cost function in different spectral domains reveals that the large-scale flow is adjusted during the first 10 iterations,in which discontinuous diabatic parameterizations play very little role.The adjustment produced by the minimization gradually moves to relatively smaller scales between 10-20th iterations.During this transition period,discontinuities in the cost function produced by 'on-off' switches in the physical parameterizations caused the cost function to stay in a shallow local minimum instead of continuously decreasing toward a deeper minimum. Next,a mixed 4D-Var scheme is tested in which large-scale flows are first adiabatically adjusted to a sufficient level,followed by a diabatic adjustment introduced after 10 to 20 iterations. The mixed 4D-Var produced a closer fit of analysis to observations,with 38% and 41% more decrease in the values of the cost function and the norm of gradient,respectively,than the standard diabatic 4D-Var,while the CPU time is reduced by 21%.The resulting optimal initial conditions improve the short-range forecast skills of 48-hour statistics.The detrimental effect of parameterization discontinuities on minimization was also reduced.展开更多
In this study, Fengyun-3 D(FY-3 D) Micro Wave Radiation Imager(MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4 DVar) sy...In this study, Fengyun-3 D(FY-3 D) Micro Wave Radiation Imager(MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4 DVar) system. Quality control procedures were developed for MWRI applications by using algorithms from similar microwave instruments. Compared with the FY-3 C MWRI, the bias of FY-3 D MWRI observations did not show a clear node-dependent difference from the numerical weather prediction background simulation. A conventional bias correction approach can therefore be used to remove systematic biases before the assimilation of data. After assimilating the MWRI radiance data into GRAPES, the geopotential height and humidity analysis fields were improved relative to the control experiment. There was a positive impact on the location of the subtropical high, which led to improvements in forecasts of the track of Typhoon Shanshan.展开更多
The key mathematics and applications of various modern atmospheric/oceanicdata assimilation methods including Optimal Interpolation (OI), 4-dimensional variational approach(4D-Var) and filters were systematically revi...The key mathematics and applications of various modern atmospheric/oceanicdata assimilation methods including Optimal Interpolation (OI), 4-dimensional variational approach(4D-Var) and filters were systematically reviewed and classified. Based on the data assimilationphilosophy, i. e. , using model dynamics to extract the observational information, the commoncharacter of the problem, such as the probabilistic nature of the evolution of theatmospheric/oceanic system, noisy and irregularly spaced observations, and the advantages anddisadvantages of these data assimilation algorithms, were discussed. In the filtering framework, allmodern data assimilation algorithms were unified: OI/3D-Var is a stationary filter, 4D-Var is alinear (Kalman) filter and an ensemble of Kalman filters is able to construct a nonlinear filter.The nonlinear filter such as the Ensemble Kalman Filter (EN-KF), Ensemble Adjustment Kalman Filter(EAKF) and Ensemble Transformation Kalman Filter (ETKF) can, to some extent, account for thenon-Gaussian information of the prior distribution from the model. The flow-dependent covarianceestimated by an ensemble filter may be introduced to OI and 4D-Var to improve these traditionalalgorithms. In practice, the performance of algorithms may depend on the specific numerical modeland the choice of algorithm may depend on the specific problem. However, the unification ofalgorithms allows us to establish a unified test system to evaluate these algorithms, which providesmore insights into data assimilation philosophies and helps improve data assimilation techniques.展开更多
The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along w...The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along with Variational Doppler Radar Analysis System assimilation analysis.During the convective process,a gust front appeared ahead of two existing convective systems,respectively.In the warm and moist environment ahead of the gust fronts in the south,there was a mesoscale air mass boundary.With the process of a gust front moving southward,approaching the mesoscale air mass boundary,the convergence intensified in the area between the gust front and the mesoscale air mass boundary.Finally,the strong convergent updraft exceeded the level of free convection and triggered the new convection.展开更多
A significant attempt to design a timesaving and efficient four-dimensional variational data assimilation (4DVar) has been made in this paper, and a new approach to data assimilation, which is noted as 'threedimens...A significant attempt to design a timesaving and efficient four-dimensional variational data assimilation (4DVar) has been made in this paper, and a new approach to data assimilation, which is noted as 'threedimensional variational data assimilation of mapped observation (3DVM)' is proposed, based on the new concept of mapped observation and the new idea of backward 4DVar. Like the available 4DVar, 3DVM produces an optimal initial condition (IC) that is consistent with the prediction model due to the inclusion of model constraints and best fits the observations in the assimilation window through the model solution trajectory. Different from the 4DVar, the IC derived from 3DVM is located at the end of the assimilation window rather than at the beginning conventionally. This change greatly reduces the computing cost for the new approach, which is almost the same as that of the three-dimensional variational data assimilation (3DVar). Especially, such a change is able to improve assimilation accuracy because it does not need the tangential linear and adjoint approximations to calculate the gradient of cost function. Therefore, in numerical test, the new approach produces better IC than 4DVar does for 72-h simulation of TY9914 (Dan), by assimilating the three-dimensional fields of temperature and wind retrieved from the Advanced Microwave Sounding Unit-A (AMSU-A) observations. Meanwhile, it takes only 1/7 of the computing cost that the 4DVar requires for the same initialization with the same retrieved data.展开更多
A regional surface carbon dioxide (C02) flux inversion system, the Tan-Tracker-Region, was developed by incor- porating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical tra...A regional surface carbon dioxide (C02) flux inversion system, the Tan-Tracker-Region, was developed by incor- porating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical transport model to resolve fine-scale CO2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach (POD-4DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO2 concentrations and surface CO2 fluxes are applied to help reduce the uncertainty in initial CO2 concentrations. A persistence dynamical model was developed to describe the evolu- tion of the surface CO2 fluxes and help avoid the "signal-to-noise" problem; thus, CO2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments (OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the perform- ance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation net- work in different CO2 flux situations. The results indicate that more observation sites would be useful to systematic- ally improve the estimation of CO2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a thorough estimation of CO2 flux variability over East Asia could be performed with the regional inversion system.展开更多
基金primarily supported by the National Fundamental Research 973 Program of China(Grant No.2013CB430101)the National Natural Science Foundation of China(Grant Nos.41275031,41322032 and 41475015)+1 种基金the Social Commonwealth Research Program(Grant Nos.GYHY201506004 and GYHY201006007)the Program for New Century Excellent Talents in Universities of China
文摘This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments--assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function--are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line-- including the surface warm inflow, cold pool, gust front, and low-level wind--are much closer to the observations after assimilating the surface data in VDRAS.
基金the National Basic Research Program (973 Program) (No.2010CB 951604)the China Meteorological Administration for the R&D Special Fund for Public Welfare Industry (meteorology) [Grant No. GYHY(QX)200906009]+1 种基金the National High Technology Research and Development Program of China (863 Program) (No. 2010AA012304)the LASG free exploration fund
文摘Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.
基金The National Key Research and Development Program of China under contract Nos 2017YFC1501803 and2018YFC1506903the National Natural Science Foundation of China under contract Nos 91730304,41475021 and 41575026
文摘The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).Alternatively,physical space analysis system(4D-PSAS)is proposed to reduce the computation cost,in which the 4D-Var problem is solved in physical space(i.e.,observation space).In this study,the conjugate gradient(CG)algorithm,implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process.The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed.In order to overcome the non-monotonic variation of gradient norm,a new algorithm,Minimum Residual(MINRES)algorithm,is implemented in the process of assimilation iteration in this study.Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function,greatly improves the convergence properties of 4D-PSAS as well,and significantly restrains the numerical noises associated with the traditional 4D-PSAS system.
基金NSF grant ATM-9812729NOAA grant NA77WA0571Qiao is also supported by the Chinese National Key Basic Research Project under Contract G1999043809
文摘The impact of diabatic processes on 4-dimensional variational data assimilation (4D-Var) was studied using the 1995 version of NCEP's global spectral model with and without full physics.The adjoint was coded manually.A cost function measuring spectral errors of 6-hour forecasts to 'observation' (the NCEP reanalysis data) was minimized using the L-BFGS (the limited memory quasi-Newton algorithm developed by Broyden,Fletcher,Goldfard and Shanno) for optimizing parameters and initial conditions.Minimization of the cost function constrained by an adiabatic version of the NCEP global model converged to a minimum with a significant amount of decrease in the value of the cost function.Minimization of the cost function using the diabatic model, however,failed after a few iterations due to discontinuities introduced by physical parameterizations.Examination of the convergence of the cost function in different spectral domains reveals that the large-scale flow is adjusted during the first 10 iterations,in which discontinuous diabatic parameterizations play very little role.The adjustment produced by the minimization gradually moves to relatively smaller scales between 10-20th iterations.During this transition period,discontinuities in the cost function produced by 'on-off' switches in the physical parameterizations caused the cost function to stay in a shallow local minimum instead of continuously decreasing toward a deeper minimum. Next,a mixed 4D-Var scheme is tested in which large-scale flows are first adiabatically adjusted to a sufficient level,followed by a diabatic adjustment introduced after 10 to 20 iterations. The mixed 4D-Var produced a closer fit of analysis to observations,with 38% and 41% more decrease in the values of the cost function and the norm of gradient,respectively,than the standard diabatic 4D-Var,while the CPU time is reduced by 21%.The resulting optimal initial conditions improve the short-range forecast skills of 48-hour statistics.The detrimental effect of parameterization discontinuities on minimization was also reduced.
基金Supported by the National Natural Science Foundation of China(41675108)National Key Research and Development Program(2018YFC1506700)Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0105)。
文摘In this study, Fengyun-3 D(FY-3 D) Micro Wave Radiation Imager(MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4 DVar) system. Quality control procedures were developed for MWRI applications by using algorithms from similar microwave instruments. Compared with the FY-3 C MWRI, the bias of FY-3 D MWRI observations did not show a clear node-dependent difference from the numerical weather prediction background simulation. A conventional bias correction approach can therefore be used to remove systematic biases before the assimilation of data. After assimilating the MWRI radiance data into GRAPES, the geopotential height and humidity analysis fields were improved relative to the control experiment. There was a positive impact on the location of the subtropical high, which led to improvements in forecasts of the track of Typhoon Shanshan.
文摘The key mathematics and applications of various modern atmospheric/oceanicdata assimilation methods including Optimal Interpolation (OI), 4-dimensional variational approach(4D-Var) and filters were systematically reviewed and classified. Based on the data assimilationphilosophy, i. e. , using model dynamics to extract the observational information, the commoncharacter of the problem, such as the probabilistic nature of the evolution of theatmospheric/oceanic system, noisy and irregularly spaced observations, and the advantages anddisadvantages of these data assimilation algorithms, were discussed. In the filtering framework, allmodern data assimilation algorithms were unified: OI/3D-Var is a stationary filter, 4D-Var is alinear (Kalman) filter and an ensemble of Kalman filters is able to construct a nonlinear filter.The nonlinear filter such as the Ensemble Kalman Filter (EN-KF), Ensemble Adjustment Kalman Filter(EAKF) and Ensemble Transformation Kalman Filter (ETKF) can, to some extent, account for thenon-Gaussian information of the prior distribution from the model. The flow-dependent covarianceestimated by an ensemble filter may be introduced to OI and 4D-Var to improve these traditionalalgorithms. In practice, the performance of algorithms may depend on the specific numerical modeland the choice of algorithm may depend on the specific problem. However, the unification ofalgorithms allows us to establish a unified test system to evaluate these algorithms, which providesmore insights into data assimilation philosophies and helps improve data assimilation techniques.
基金supported by the Beijing Municipal Science and Technology Project [grant number 2171100004417008]the National Natural Science Foundation of China [grant numbers 41575050,41875049,and 41805034]
文摘The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along with Variational Doppler Radar Analysis System assimilation analysis.During the convective process,a gust front appeared ahead of two existing convective systems,respectively.In the warm and moist environment ahead of the gust fronts in the south,there was a mesoscale air mass boundary.With the process of a gust front moving southward,approaching the mesoscale air mass boundary,the convergence intensified in the area between the gust front and the mesoscale air mass boundary.Finally,the strong convergent updraft exceeded the level of free convection and triggered the new convection.
基金Supported jointly by the Projects of National Basic Research Program of China (973) (Grant No. 2004CB418304)the NSFC Fund for Creative Research Groups (Grant No. 40475044)+1 种基金the NSFC Fund of General Program (Grant No. 40221503)the Key-direction Project of CAS Knowledge Innovation Program (Grant No. KZCX3-SW-230).
文摘A significant attempt to design a timesaving and efficient four-dimensional variational data assimilation (4DVar) has been made in this paper, and a new approach to data assimilation, which is noted as 'threedimensional variational data assimilation of mapped observation (3DVM)' is proposed, based on the new concept of mapped observation and the new idea of backward 4DVar. Like the available 4DVar, 3DVM produces an optimal initial condition (IC) that is consistent with the prediction model due to the inclusion of model constraints and best fits the observations in the assimilation window through the model solution trajectory. Different from the 4DVar, the IC derived from 3DVM is located at the end of the assimilation window rather than at the beginning conventionally. This change greatly reduces the computing cost for the new approach, which is almost the same as that of the three-dimensional variational data assimilation (3DVar). Especially, such a change is able to improve assimilation accuracy because it does not need the tangential linear and adjoint approximations to calculate the gradient of cost function. Therefore, in numerical test, the new approach produces better IC than 4DVar does for 72-h simulation of TY9914 (Dan), by assimilating the three-dimensional fields of temperature and wind retrieved from the Advanced Microwave Sounding Unit-A (AMSU-A) observations. Meanwhile, it takes only 1/7 of the computing cost that the 4DVar requires for the same initialization with the same retrieved data.
基金Supported by the National Natural Science Foundation of China(41130528)National High Technology Research and Development Program of China(2013AA122002)+1 种基金Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues(XDA05040404)National Key Technology Research and Development Program of China(2016YFC0202103)
文摘A regional surface carbon dioxide (C02) flux inversion system, the Tan-Tracker-Region, was developed by incor- porating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical transport model to resolve fine-scale CO2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach (POD-4DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO2 concentrations and surface CO2 fluxes are applied to help reduce the uncertainty in initial CO2 concentrations. A persistence dynamical model was developed to describe the evolu- tion of the surface CO2 fluxes and help avoid the "signal-to-noise" problem; thus, CO2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments (OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the perform- ance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation net- work in different CO2 flux situations. The results indicate that more observation sites would be useful to systematic- ally improve the estimation of CO2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a thorough estimation of CO2 flux variability over East Asia could be performed with the regional inversion system.