Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fe...Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fenton-like reaction.A removal efficiency of 94%was achieved with 0.2 g L^(-1) catalyst and 20 mmol L^(-1) H_(2)O_(2) within 90 min.We demonstrated that 5%C–CuFe_(2)O_(4) catalyst in the presence of H_(2)O_(2) was significantly efficient for TCH degradation under the near-neutral pH(5–9)without buffer.Multiple techniques,including SEM,TEM,XRD,FTIR,Raman,XPS M€ossbauer and so on,were conducted to investigate the structures,morphologies and electronic properties of as-prepared samples.The introduction of carbon can effectively accelerate electron transfer by cooperating with Cu and Fe to activate H_(2)O_(2) to generate·OH and·O_(2)^(-).Particularly,theoretical calculations display that the p,p,d orbital hybridization of C,O,Cu and Fe can form C–O–Cu and C–O–Fe bonds,and the electrons on carbon can transfer to metal Cu and Fe along the C–O–Fe and C–O–Cu channels,thus forming electron-rich reactive centers around Fe and Cu.This work provides lightful reference for the modification of spinel ferrites in Fenton-like application.展开更多
A method was developed for the determination of tetraethyl ammonium (TEA) by reversed-phase ion- pair chromatography with indirect ultraviolet detection, Chromatographic separation was achieved on a reversed-phase C...A method was developed for the determination of tetraethyl ammonium (TEA) by reversed-phase ion- pair chromatography with indirect ultraviolet detection, Chromatographic separation was achieved on a reversed-phase C18 column using background ultraviolet absorbing reagent - ion-pair reagent - organic solvent as mobile phase. The effects of the background ultraviolet absorbing reagents, detection wavelength, ion-pair reagents, organic solvents and column temperature on the determination method were investigated and the retention rules discussed. Results found that TEA could be successfully analyzed by using 0.7 mmol/L 4-aminophenol hydrochloride and 0.15 mmol/L 1-heptanesulfonic acid sodium mixed with 20% (v/v) methanol as mobile phase at a UV detection wavelength of 230 nm. Under these conditions, the retention time of tetraethyl ammonium was 2.85 min. The detection limit (S/N = 3) for TEA was 0.06 mg/L. The relative standard deviations (n = 5) for peak area and retention time were 0.35% and 0.02%, respectively. The method has been successfully applied to the determination of synthesized tetraethyl ammonium bromide. Recovery of tetraethyl ammonium after spiking was 99.1%.展开更多
The aim of the study was to prepare berberine hydrochloride long-circulating liposomes and optimize the formulation and process parameters,and investigate the influence of different factors on the encapsulation effici...The aim of the study was to prepare berberine hydrochloride long-circulating liposomes and optimize the formulation and process parameters,and investigate the influence of different factors on the encapsulation efficiency.Berberine hydrochloride liposomes were prepared in response to a transmembrane ion gradient that was established by ionophore A23187.Free and liposomal drug were separated by cation exchange resin,and then the amount of intraliposomal berberine hydrochloride was determined by UV spectrophotometry.The optimized encapsulation efficiency of berberine hydrochloride liposomes was 94.3%2.1%when the drug-to-lipid ratio was 1:20,and the mean diameter was 146.9 nm3.2 nm.As a result,the ionophore A23187-mediated ZnSO_(4)gradient method was suitable for the preparation of berberine hydrochloride liposomes that we could get the desired encapsulation efficiency and drug loading.展开更多
The photocatalytic performances in the photocatalytic degradation of tetracycline hydrochloride(TC) of ZnSb2O4 and ZnSb2O6 synthesized by hydrothermal method were explored.The effects of synthesis conditions including...The photocatalytic performances in the photocatalytic degradation of tetracycline hydrochloride(TC) of ZnSb2O4 and ZnSb2O6 synthesized by hydrothermal method were explored.The effects of synthesis conditions including reaction temperature, reaction time, precursor solution pH, and the amount of hydrazine hydrate on the photocatalytic activity were discussed.The ZnSb2O4 and ZnSb2O6 photocatalysts prepared under optimal conditions exhibited similar photocatalytic activities for the degradation of TC. However, the areal photoctalytic activity of ZnSb2O4 was 12 times higher than that of ZnSb2O6 because of their different electronic and geometric structures. The photocatalytic degradation mechanisms of TC over ZnSb2O4 and ZnSb2O6 were proposed. Our work will facilitate the development of composite oxides consisting of p-block metal ions as new semiconductor photocatalysts.展开更多
Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blu...Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blue and methyl orange)and tetracycline hydrochloride under visible-light irradiation(λ〉420 nm).Compared to bulk g-C3N4,porous g-C3N4exhibited much better capability for removing these contaminants,especially under visible-light irradiation,due to the enlarged specific surface area and more efficient separation of photogenerated charge carries.In particular,porous g-C3N4obtained by calcining bulk g-C3N4in air at 525℃ showed the highest visible-light-driven catalytic activity among these samples.Superoxide radical anions(·O2^-)were found to be the primary active species responsible for photodegradation.展开更多
The building block of N-alkyl derivative of allosamidin(chitinase inhibitor),4,6-O-benzylidene-N-octyl-D-allosamine hydrochloride was stereoselectively synthesized in two steps under mild conditions.Nucleophilic add...The building block of N-alkyl derivative of allosamidin(chitinase inhibitor),4,6-O-benzylidene-N-octyl-D-allosamine hydrochloride was stereoselectively synthesized in two steps under mild conditions.Nucleophilic addition of octylamine to 2- oxoglucopyranoside gave a‘carbonyl group transfer' product in 62%yield.Subsequent stereoselective reduction of newly formed C=O with NaBH_4 produced title compound in 75%yield.X-ray diffraction analysis indicates the title compound adopts syn 1,2,3 stereochemistry and chair-chair conformation.The crystal structure is stabilized by hydrogen bonds.展开更多
基金supported by the Program for the National Natural Science Foundation of China(52070077,51879101,51779090)the National Program for Support of Top-Notch Young Professionals of China(2014)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(IRT-13R17)Natural Science Foundation of Hunan Province(2022JJ20013,2021JJ40098).
文摘Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fenton-like reaction.A removal efficiency of 94%was achieved with 0.2 g L^(-1) catalyst and 20 mmol L^(-1) H_(2)O_(2) within 90 min.We demonstrated that 5%C–CuFe_(2)O_(4) catalyst in the presence of H_(2)O_(2) was significantly efficient for TCH degradation under the near-neutral pH(5–9)without buffer.Multiple techniques,including SEM,TEM,XRD,FTIR,Raman,XPS M€ossbauer and so on,were conducted to investigate the structures,morphologies and electronic properties of as-prepared samples.The introduction of carbon can effectively accelerate electron transfer by cooperating with Cu and Fe to activate H_(2)O_(2) to generate·OH and·O_(2)^(-).Particularly,theoretical calculations display that the p,p,d orbital hybridization of C,O,Cu and Fe can form C–O–Cu and C–O–Fe bonds,and the electrons on carbon can transfer to metal Cu and Fe along the C–O–Fe and C–O–Cu channels,thus forming electron-rich reactive centers around Fe and Cu.This work provides lightful reference for the modification of spinel ferrites in Fenton-like application.
基金supported by the Natural Science Foundation of Heilongjiang Province(Grant No.B201307)the Ministry of Education of Heilongjiang Province(No.12531192)the Program for Scientific and Technological Innovation Team Construction in Universities of Heilongjiang Province(No. 2011TD010)
文摘A method was developed for the determination of tetraethyl ammonium (TEA) by reversed-phase ion- pair chromatography with indirect ultraviolet detection, Chromatographic separation was achieved on a reversed-phase C18 column using background ultraviolet absorbing reagent - ion-pair reagent - organic solvent as mobile phase. The effects of the background ultraviolet absorbing reagents, detection wavelength, ion-pair reagents, organic solvents and column temperature on the determination method were investigated and the retention rules discussed. Results found that TEA could be successfully analyzed by using 0.7 mmol/L 4-aminophenol hydrochloride and 0.15 mmol/L 1-heptanesulfonic acid sodium mixed with 20% (v/v) methanol as mobile phase at a UV detection wavelength of 230 nm. Under these conditions, the retention time of tetraethyl ammonium was 2.85 min. The detection limit (S/N = 3) for TEA was 0.06 mg/L. The relative standard deviations (n = 5) for peak area and retention time were 0.35% and 0.02%, respectively. The method has been successfully applied to the determination of synthesized tetraethyl ammonium bromide. Recovery of tetraethyl ammonium after spiking was 99.1%.
文摘The aim of the study was to prepare berberine hydrochloride long-circulating liposomes and optimize the formulation and process parameters,and investigate the influence of different factors on the encapsulation efficiency.Berberine hydrochloride liposomes were prepared in response to a transmembrane ion gradient that was established by ionophore A23187.Free and liposomal drug were separated by cation exchange resin,and then the amount of intraliposomal berberine hydrochloride was determined by UV spectrophotometry.The optimized encapsulation efficiency of berberine hydrochloride liposomes was 94.3%2.1%when the drug-to-lipid ratio was 1:20,and the mean diameter was 146.9 nm3.2 nm.As a result,the ionophore A23187-mediated ZnSO_(4)gradient method was suitable for the preparation of berberine hydrochloride liposomes that we could get the desired encapsulation efficiency and drug loading.
基金supported by the National Natural Science Foundation of China(21307012)Educational Commission of Fujian Province(2014J01035,JA15138)
文摘The photocatalytic performances in the photocatalytic degradation of tetracycline hydrochloride(TC) of ZnSb2O4 and ZnSb2O6 synthesized by hydrothermal method were explored.The effects of synthesis conditions including reaction temperature, reaction time, precursor solution pH, and the amount of hydrazine hydrate on the photocatalytic activity were discussed.The ZnSb2O4 and ZnSb2O6 photocatalysts prepared under optimal conditions exhibited similar photocatalytic activities for the degradation of TC. However, the areal photoctalytic activity of ZnSb2O4 was 12 times higher than that of ZnSb2O6 because of their different electronic and geometric structures. The photocatalytic degradation mechanisms of TC over ZnSb2O4 and ZnSb2O6 were proposed. Our work will facilitate the development of composite oxides consisting of p-block metal ions as new semiconductor photocatalysts.
基金Supported by the National Natural Science Foundation of China(Grant No.21477022)
文摘Porous g-C3N4samples were obtained by simply calcining bulk g-C3N4in static air in a muffle oven.The photocatalytic performance of these samples was evaluated through the removal of aqueous organic dyes(methylene blue and methyl orange)and tetracycline hydrochloride under visible-light irradiation(λ〉420 nm).Compared to bulk g-C3N4,porous g-C3N4exhibited much better capability for removing these contaminants,especially under visible-light irradiation,due to the enlarged specific surface area and more efficient separation of photogenerated charge carries.In particular,porous g-C3N4obtained by calcining bulk g-C3N4in air at 525℃ showed the highest visible-light-driven catalytic activity among these samples.Superoxide radical anions(·O2^-)were found to be the primary active species responsible for photodegradation.
基金the financial supports from the National Natural Science Foundation of China(No. 20972142)the State Key Laboratory of Bio-organic and Natural Products Chemistry,CAS(No.08417).
文摘The building block of N-alkyl derivative of allosamidin(chitinase inhibitor),4,6-O-benzylidene-N-octyl-D-allosamine hydrochloride was stereoselectively synthesized in two steps under mild conditions.Nucleophilic addition of octylamine to 2- oxoglucopyranoside gave a‘carbonyl group transfer' product in 62%yield.Subsequent stereoselective reduction of newly formed C=O with NaBH_4 produced title compound in 75%yield.X-ray diffraction analysis indicates the title compound adopts syn 1,2,3 stereochemistry and chair-chair conformation.The crystal structure is stabilized by hydrogen bonds.