期刊文献+
共找到511篇文章
< 1 2 26 >
每页显示 20 50 100
Scalable Ir‑Doped NiFe_(2)O_(4)/TiO_(2)Heterojunction Anode for Decentralized Saline Wastewater Treatment and H_(2)Production
1
作者 Sukhwa Hong Jiseon Kim +3 位作者 Jaebeom Park Sunmi Im Michael R.Hoffmann Kangwoo Cho 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期1-18,共18页
Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2)production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study ... Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2)production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2)overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2)marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater. 展开更多
关键词 Wastewater electrolysis cell Ir-doped NiFe_(2)O_(4) Reactive chlorine species Decentralized H_(2)production On-site wastewater treatment
下载PDF
Pt nanoclusters modified porous g-C_(3)N_(4)nanosheets to significantly enhance hydrogen production by photocatalytic water reforming of methanol
2
作者 Yi-Fei Liang Jin-Rong Lu +2 位作者 Shang-Kun Tian Wen-Quan Cui Li Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期40-50,共11页
For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a... For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol. 展开更多
关键词 Water reforming of methanol Photocatalysis g-C_(3)N_(4) Pt nanoclusters Hydrogen production
下载PDF
CuO/Co_(3)O_(4)Bifunctional Catalysts for Electrocatalytic 5-Hydroxymethylfurfural Oxidation Coupled Cathodic Ammonia Production
3
作者 Li Zhang Peiyue Jin +8 位作者 Ze Wu Bo Zhou Junchang Jiang Aomeng Deng Qiuyue Li Tanveer Hussain Yiqiong Zhang Hanwen Liu Shuangyin Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期255-262,共8页
The electrochemical coupling of biomass oxidation and nitrogen conversion presents a potential strategy for high value-added chemicals and nitrogen cycling.Herein,in this work,CuO/Co_(3)O_(4)with heterogeneous interfa... The electrochemical coupling of biomass oxidation and nitrogen conversion presents a potential strategy for high value-added chemicals and nitrogen cycling.Herein,in this work,CuO/Co_(3)O_(4)with heterogeneous interface is successfully constructed as a bifunctional catalyst for the electrooxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and the electroreduction of nitrate to ammonia(NH_(3)).The open-circuit potential spontaneous experiment shows that more 5-hydroxymethylfurfural molecules are adsorbed in the Helmholtz layer of the CuO/Co_(3)O_(4)composite,which certifies that the CuO/Co_(3)O_(4)heterostructure is conducive to the kinetic adsorption of 5-hydroxymethylfurfural.In situ electrochemical impedance spectroscopy further shows that CuO/Co_(3)O_(4)has faster reaction kinetics and lower reaction potential in oxygen evolution reaction and 5-hydroxymethylfurfural electrocatalytic oxidation.Moreover,CuO/Co_(3)O_(4)also has a good reduction effect on NO_(3)^(-).The ex-situ Raman spectroscopy shows that under the reduction potential,the metal oxide is reduced,and the generated Cu_(2)O can be used as a new active site for the reaction to promote the electrocatalytic conversion of NO_(3)^(-)to NH_(3) synthesis.This work provides valuable guidance for the synthesis of value-added chemicals by 5-hydroxymethylfurfural electrocatalytic oxidation coupled with NO_(3)^(-)while efficiently producing NH_(3). 展开更多
关键词 5-hydroxymethylfurfural oxidation ammonia production bifunctional catalyst CuO/Co_(3)O_(4) electrocatalyst
下载PDF
Self-assembled S-scheme In_(2.77)S_(4)/K^(+)-doped g-C_(3)N_(4)photocatalyst with selective O_(2) reduction pathway for efficient H_(2)O_(2) production using water and air
4
作者 Qiqi Zhang Hui Miao +2 位作者 Jun Wang Tao Sun Enzhou Liu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期176-189,共14页
The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(... The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics. 展开更多
关键词 Photocatalysis H_(2)O_(2) production K^(+)-doped g-C_(3)N_(4) In_(2.77)S_(4) S-scheme heterojunction
下载PDF
Controllable design of Zn-Ni-P on g-C_3N_4 for efficient photocatalytic hydrogen production 被引量:13
5
作者 Yanbing Li Zhiliang Jin +1 位作者 Lijun Zhang Kai Fan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第3期390-402,共13页
Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photoca... Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photocatalyst, Zn-Ni-P@g-C3N4, was successfully designed and controllably prepared for highly efficient photocatalytic H2 evolution. The electron transport routes were successfully adjusted and the H2 evolution was greatly improved. The maximum amount of H2 evolved reached about 531.2 μmol for 5 h over Zn-Ni-P@g-C3N4 photocatalyst with a molar ratio of Zn to Ni of 1:3 under illumination of 5 W LED white light (wavelength 420 nm). The H2 evolution rate was 54.7 times higher than that over pure g-C3N4. Moreover, no obvious reduction in the photocatalytic activity was observed even after 4 cycles of H2 production for 5 h. This synergistically increased effect was confirmed through the results of characterizations such as XRD, TEM, SEM, XPS, N2 adsorption, UV-vis DRS, transient photocurrent, FT-IR, transient fluorescence, and Mott-Schottky studies. These studies showed that the Zn-Ni-P nanoparticles modified on g-C3N4 provide more active sites and improve the efficiency of photogenerated charge separation. In addition, the possible mechanism of photocatalytic H2 production is proposed. 展开更多
关键词 Zn-Ni-P g-C3N4 H2 production Controllable design PHOTOCATALYST
下载PDF
In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production 被引量:19
6
作者 Haotian Xu Rong Xiao +3 位作者 Jingran Huang Yan Jiang Chengxiao Zhao Xiaofei Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期107-114,共8页
Converting sustainable solar energy into hydrogen energy over semiconductor-based photocatalytic materials provides an alternative to fossil fuel consumption.However,efficient photocatalytic splitting of water to real... Converting sustainable solar energy into hydrogen energy over semiconductor-based photocatalytic materials provides an alternative to fossil fuel consumption.However,efficient photocatalytic splitting of water to realize carbon-free hydrogen production remains a challenge.Heterojunction photocatalysts with well-defined dimensionality and perfectly matched interfaces are promising for achieving highly efficient solar-to-hydrogen conversion.Herein,we report the fabrication of a novel type of protonated graphitic carbon nitride(PCN)/Ti3C2 MXene heterojunctions with strong interfacial interactions.As expected,the two-dimensional(2D)PCN/2D Ti3C2 MXene interface heterojunction achieves a highly improved hydrogen evolution rate(2181μmol∙g‒1)in comparison with bulk g-C3N4(393μmol∙g‒1)and protonated g-C3N4(816μmol∙g‒1).The charge-regulated surfaces of PCN and the accelerated charge transport at the face-to-face 2D/2D Schottky heterojunction interface are the major contributors to the excellent hydrogen evolution performance of the composite photocatalyst. 展开更多
关键词 g-C3N4 Ti3C2 Hybridization Schottky heterojunction PROTONATION Photocatalytic hydrogen production
下载PDF
Amorphous TiO_2-modified CuBi_2O_4 Photocathode with enhanced photoelectrochemical hydrogen production activity 被引量:5
7
作者 Xianglin Zhu Zihan Guan +3 位作者 Peng Wang Qianqian Zhang Ying Dai Baibiao Huang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第10期1704-1710,共7页
In this study,CuBi2O4 photocathodes were prepared using a simple electrodeposition method for photoelectrochemical(PEC)hydrogen production.The prepared photocathodes were modified with amorphous TiO2 and a Pt co‐cata... In this study,CuBi2O4 photocathodes were prepared using a simple electrodeposition method for photoelectrochemical(PEC)hydrogen production.The prepared photocathodes were modified with amorphous TiO2 and a Pt co‐catalyst,which resulted in the formation of CuBi2O4/TiO2 p‐n heterojunctions,and enhanced the activities of the as‐prepared photocathodes.The novel Pt/TiO2/CuBi2O4 photocathode exhibited a photocurrent of 0.35 mA/cm2 at 0.60 V vs.Reversible Hydrogen Electrode(RHE),which was nearly twice that of the Pt/CuBi2O4 photocathode.The present study provides a facile method for increasing the efficiency of photocathodes and provides meaningful guidance for the preparation of high‐performance CuBi2O4 photocathodes. 展开更多
关键词 Photoelectrochemical hydrogen production CuBi2O4 Amorphous TiO2 p‐n heterojunction Carriers’separation
下载PDF
Enhanced gas production and CO_(2) storage in hydrate-bearing sediments via pre-depressurization and rapid CO_(2) injection
8
作者 Hongnan Chen Yifei Sun +5 位作者 Bojian Cao Minglong Wang Ming Wang Jinrong Zhong Changyu Sun Guangjin Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期126-134,共9页
Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In t... Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In this study,we attempted to construct sediment samples with different residual CH_(4) hydrate amounts and reservoir conditions,and then investigate the potentials of both CO_(2) storage and enhanced CH_(4) recovery in depleted gas hydrate deposits in the permafrost and ocean zones,respectively.The results demonstrate that CO_(2) hydrate formation rate can be significantly improved due to the presence of residual hydrate seeds;However,excessive residual hydrates in turn lead to the decrease in CO_(2) storage efficiency.Affected by the T-P conditions of the reservoir,the storage amount of liquid CO_(2) can reach 8 times that of gaseous CO_(2),and CO_(2) stored in hydrate form reaches 2-4 times.Additionally,we noticed two other advantages of this method.One is that CO_(2) injection can enhance CH_(4) recovery rate and increases CH_(4) recovery by 10%-20%.The second is that hydrate saturation in the reservoir can be restored to 20%-40%,which means that the solid volume of the reservoir avoids serious shrinkage.Obviously,this is crucial for protecting the goaf stability.In summary,this approach is greatly promising for high-efficient CO_(2) storage and safe exploitation of gas hydrate. 展开更多
关键词 HYDRATE DEPRESSURIZATION CO_(2) storage CH_(4) production Reservoir remediation
下载PDF
Fabrication of hierarchical ZnIn2S4@CNO nanosheets for photocatalytic hydrogen production and CO2 photoreduction 被引量:2
9
作者 Kai Zhu Jie Ou-Yang +5 位作者 Qian Zeng Sugang Meng Wei Teng Yanhua Song Sheng Tang Yanjuan Cui 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期454-463,共10页
Photocatalytic H2 production and CO2 reduction have attracted considerable attention for clean energy development.In this work,we designed an efficient photocatalyst by integrating lamellar oxygen-doped carbon nitride... Photocatalytic H2 production and CO2 reduction have attracted considerable attention for clean energy development.In this work,we designed an efficient photocatalyst by integrating lamellar oxygen-doped carbon nitride(CNO)nanosheets into ZnIn2S4(ZIS)microflowers by a one-step hydrothermal method.A well-fitted 2D hierarchical hybrid heterostructure was fabricated.Under visible light irradiation,the ZIS@CNO composite with 40 wt%CNO(ZC 40%)showed the highest hydrogen evolution rate from water(188.4μmol·h-1),which was approximately 2.1 times higher than those of CNO and ZIS(88.6 and 90.2μmol·h-1,respectively).Furthermore,the selective CO production rates of ZC 40%(12.69μmol·h-1)were 2.2 and 14.0 times higher than those of ZIS(5.85μmol·h-1)and CNO(0.91μmol·h-1),respectively,and the CH4 production rate of ZC 40%was 1.18μmol·h-1.This enhanced photocatalytic activity of CNO@ZIS is due mainly to the formation of a heterostructure that can promote the transfer of photoinduced electrons and holes between CNO and ZIS,thereby efficiently avoiding recombination of electron-hole pairs. 展开更多
关键词 ZnIn2S4 Oxygen doped carbon nitride PHOTOCATALYSIS H2 production CO2 reduction
下载PDF
Mass production of Li Fe PO_4/C energy materials using Fe–P waste slag 被引量:3
10
作者 Gen Li Pengcheng Wu +3 位作者 Chunhui Luo Qian Cui Guixin Wang Kangping Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期375-380,共6页
To effectively solve the agglomeration problems in the solid state reaction process,pre-adding glucose is adopted to the synthesis of Li Fe PO4/C energy materials using Fe–P waste slag. The average particle grain siz... To effectively solve the agglomeration problems in the solid state reaction process,pre-adding glucose is adopted to the synthesis of Li Fe PO4/C energy materials using Fe–P waste slag. The average particle grain size of Li FeP O4/C decreases,and the impurities in Li Fe PO4/C composites reduce to a great extent. It makes great sense to the mass industrial production. The optimum synthesis conditions determined in this work are based on the orthogonal experiments. The samples synthesized in a scale of 500 g exhibit high purity,excellent electrochemical performance,high reaction activity,good reversibility,and low polarization level.The discharge capacities are 145,134,117,and 102 m Ah/g at the current densities of 0.1 C,0.2 C,0.5 C and1 C,respectively. This work puts forward a practical suggestion for mass producing environmental benign and low cost Li FeP O4/C as cathode materials of lithium ion batteries. 展开更多
关键词 LIFEPO4/C Fe1.5P Pre-adding glucose Mass production Orthogonal experiment
下载PDF
Production threshold impact on a GEANT4 calculation of the power deposition in a fast domain: MEGAPIE spallation target
11
作者 Abdesslam Lamrabet Abdelmajid Maghnouj +1 位作者 Jaouad Tajmouati Mohamed Bencheikh 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第5期40-47,共8页
The calculation time in the Monte Carlo simulations consistently represents an essential issue. It is often very long, and its decrease constitutes a challenge for the simulator. Generally, an MC simulation is qualifi... The calculation time in the Monte Carlo simulations consistently represents an essential issue. It is often very long, and its decrease constitutes a challenge for the simulator. Generally, an MC simulation is qualified as quality or not according to two main criteria: the calculation time and the accuracy of the results. However, in most cases, the optimization of one criterion affects negatively the other. Therefore, a compromise between both of them is always required in this kind of simulation. The present work aims at studying the impact of the production threshold(or cut) of the GEANT4 toolkit on the calculation of the power deposition in the MEGAPIE spallation target.The production threshold of secondaries is a GEANT4 intrinsic parameter. It indicates the limit of energy we can reach in the production of secondary particles. This study has allowed us to make the following conclusions. First,the influence of the cut on the calculation of the deposited power depends on the volume size, its arrangement and the importance of the electromagnetic processes occurring within. Second, the accuracy of the calculations can be acceptable only below a given value of the cut energy.Third, this accuracy remains almost unchangeable from a certain value of the cut. The study has also made it possible to explore the prevalence of certain interactions in the zone of spallation in the MEGAPIE target. 展开更多
关键词 production THRESHOLD Power DEPOSITION SPALLATION MEGAPIE GEANT4
下载PDF
TiO_(2)@H^(+)/g⁃C_(3)N_(4)复合材料的光催化产氢性能及机理分析
12
作者 徐宏妍 陈书航 +2 位作者 郝亚超 赵阳灿 王斯琰 《中北大学学报(自然科学版)》 CAS 2024年第2期239-246,共8页
本文研究了TiO_(2)含量对TiO_(2)@H^(+)/g-C_(3)N_(4)异质结光催化剂产氢性能的影响。首先将石墨相氮化碳(g-C_(3)N_(4))用硫酸处理,得到酸洗氮化碳(H^(+)/g-C_(3)N_(4)),然后通过煅烧法在H^(+)/g-C_(3)N_(4)表面负载TiO_(2)得到TiO_(2)... 本文研究了TiO_(2)含量对TiO_(2)@H^(+)/g-C_(3)N_(4)异质结光催化剂产氢性能的影响。首先将石墨相氮化碳(g-C_(3)N_(4))用硫酸处理,得到酸洗氮化碳(H^(+)/g-C_(3)N_(4)),然后通过煅烧法在H^(+)/g-C_(3)N_(4)表面负载TiO_(2)得到TiO_(2)@H^(+)/g-C_(3)N_(4)复合材料,利用透射电镜、X射线衍射仪、紫外-可见漫反射仪和比表面仪对TiO_(2)@H^(+)/g-C_(3)N_(4)复合材料进行了表征,研究了其在可见光下的光催化产氢性能,探讨了TiO_(2)@H^(+)/g-C_(3)N_(4)复合材料光催化产氢机理。实验结果表明:1)煅烧法可以成功制备TiO_(2)@H^(+)/g-C_(3)N_(4)复合材料,且TiO_(2)的负载显著地提升了H^(+)/g-C_(3)N_(4)的光催化产氢性能,这主要归功于TiO_(2)/g-C_(3)N_(4)异质结的形成降低了光生电子空穴的复合速率,加快了电子的转移速率;2)实验结果还表明TiO_(2)的负载量对TiO_(2)@H^(+)/g-C_(3)N_(4)复合材料的光催化产氢性能有很大影响,当TiO_(2)含量为25%时,所制备的25-TiO_(2)@H^(+)/g-C_(3)N_(4)复合材料的光催化产氢性能最好,其光催化产氢速率为3.47 mmol·g^(−1)·h^(−1),是H^(+)/g-C_(3)N_(4)产氢速率的4.05倍,这主要归功于25-TiO_(2)@H^(+)/g-C_(3)N_(4)大的比表面积和高的光吸收度;3)所制备的25-TiO_(2)@H^(+)/g-C_(3)N_(4)复合材料还表现出良好的稳定性。 展开更多
关键词 g-C_(3)N_(4) TiO_(2) 光催化产氢 异质结 煅烧
下载PDF
石墨烯负载的超微Ru纳米颗粒催化NaBH_(4)水解制氢
13
作者 张磊 范薇 +1 位作者 邹润 雷丽军 《广州化工》 CAS 2024年第19期41-44,84,共5页
氢能被认为是绿色、清洁的新型能源形式,在未来的“碳中和碳达峰”战略中扮演重要的作用。相比于液化储氢方式,固态储氢具有运输和储存安全,使用条件温和等优势。其中NaBH_(4)是目前固态储放氢中研究最为广泛和深入的一种。采用改进的... 氢能被认为是绿色、清洁的新型能源形式,在未来的“碳中和碳达峰”战略中扮演重要的作用。相比于液化储氢方式,固态储氢具有运输和储存安全,使用条件温和等优势。其中NaBH_(4)是目前固态储放氢中研究最为广泛和深入的一种。采用改进的液相沉积-气相还原法可控制备了平均粒径为1.1 nm的超微Ru/rGO催化剂,采用透射电子显微镜对其形貌和物相进行了表征。考察了催化剂的量、NaOH浓度、NaBH_(4)浓度和反应温度对NaBH_(4)水解产氢活性的影响。同时研究了催化剂的循环稳定性以及循环后Ru/rGO的形貌和Ru尺寸分布,该工作将其超微Ru催化剂催化NaBH_(4)水解制氢提供一定的理论和实践参考。 展开更多
关键词 NaBH_(4)水解 产氢 超微纳米颗粒
下载PDF
Kinetics of the Mono-esterification Between Terephthalic Acid and 1,4-Butanediol 被引量:4
14
作者 田文玉 曾作祥 +2 位作者 薛为岚 李应宾 章添钰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第3期391-396,共6页
The chemical kinetics of the monoesterification between terephthalic acid(TPA)and 1,4-butanediol (BDO)catalyzed by a metallo-organic compound was studied using the initial rate method.The experiments were carried out ... The chemical kinetics of the monoesterification between terephthalic acid(TPA)and 1,4-butanediol (BDO)catalyzed by a metallo-organic compound was studied using the initial rate method.The experiments were carried out in the temperature range of 463-483 K,and butylhydroxyoxo-stannane(BuSnOOH)and tetrabutyl titanate[Ti(OBu)4]were used as catalyst respectively.The initial rates of the reaction catalyzed by BuSnOOH or Ti(OBu)4 were measured at a series of initial concentrations of BDO(or TPA)with the concentration of TPA(or BDO)kept constant.The reaction orders of reagents were determined by the initial rate method.The results indicate that the reaction order for TPA is related with the species of catalyst and it is 2 and 0.7 for BuSnOOH and Ti(OBu)4 respectively.However,the order for BDO is the same 0.9 for the two catalysts.Furthermore,the effects of temperature and catalyst concentration are investigated,and the activation energies and the reaction rate constants for the two catalysts were determined. 展开更多
关键词 ESTERIFICATION 1 4-butanediol terephthalic acid KINETICS
下载PDF
Preparation and Characterization of Tungsten-substituted Molybdophosphoric Acids and Catalytic Cyclodehydration of 1,4-Butanediol to Tetrahydrofuran 被引量:5
15
作者 吴慧雄 周梅 +2 位作者 屈一新 李海霞 殷恒波 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第2期200-206,共7页
A series of tungsten-substituted molybdophosphoric acids(H3PMo12-nWnO40·xH2O) were synthesized and characterized by inductive coupled plasma atomic emission spectroscopy(ICPAES),thermal gravimetry and differentia... A series of tungsten-substituted molybdophosphoric acids(H3PMo12-nWnO40·xH2O) were synthesized and characterized by inductive coupled plasma atomic emission spectroscopy(ICPAES),thermal gravimetry and differential scanning calorimetry(TG-DSC),Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),and FTIR pyridine adsorption.The as-prepared heteropoly acids have a Keggin type structure.The synthesis of tetrahydrofuran by reactive distillation and cyclodehydration of 1,4-butanediol was studied using the tungsten-substituted molybdophosphoric acids as catalysts.The results of catalytic test indicated that the catalytic activity increased with the increase in the substitution number(n) of tungsten atom in H3PMo12-nWnO40·xH2O and was constant as the substitution number(n) was more than 8.The catalytic activity increased with the increase in the catalyst loading and the selectivity of tetrahydrofuran was nearly 100%. 展开更多
关键词 tungsten-substituted molybdophosphoric acid 1 4-butanediol TETRAHYDROFURAN reactive distillation
下载PDF
电针对肝郁脾虚型抑郁症大鼠HMGB1/RAGE/TLR4通路及小胶质细胞活化的影响
16
作者 徐欣 高丽丽 李文萍 《陕西中医》 CAS 2024年第11期1471-1475,共5页
目的:探究电针对肝郁脾虚型抑郁症大鼠高迁移率族蛋白盒1/晚期糖基化终产物/toll样受体4(HMGB1/RAGE/TLR4)通路及小胶质细胞活化的影响。方法:将大鼠随机分为对照组、模型组、电针组及HMGB1激活剂组,除对照组外均构建肝郁脾虚型抑郁症... 目的:探究电针对肝郁脾虚型抑郁症大鼠高迁移率族蛋白盒1/晚期糖基化终产物/toll样受体4(HMGB1/RAGE/TLR4)通路及小胶质细胞活化的影响。方法:将大鼠随机分为对照组、模型组、电针组及HMGB1激活剂组,除对照组外均构建肝郁脾虚型抑郁症大鼠模型。观测大鼠体重及行为学表现;采用HE染色法观察大鼠海马组织病理变化;采用免疫组化检测大鼠海马组织中钙接头蛋白1(Iba-1)、一氧化氮合酶(iNOS)的表达情况;采用蛋白免疫印迹(Western blotting)检测海马组织中HMGB1/RAGE/TLR4信号传导通路相关蛋白HMGB1、RAGE、TLR4的表达水平。结果:相较于对照组,模型组大鼠长期动作行为缓慢、脱毛、毛发粗糙、凌乱无光泽,排泄存在水样便,大鼠海马区神经细胞出现明显结构损伤,且大鼠体重及在旷场箱内运动的总路程减少(P<0.05),而在旷箱中央停留时间、休息时间以及海马组织中Iba-1、iNOS、HMGB1、RAGE和TLR4表达升高,差异有统计学意义(均P<0.05)。相较于模型组,电针组大鼠精神状态有所好转,海马区神经细胞损伤程度减轻,细胞形态良好且排列逐渐趋于有序,大鼠体重、在旷场箱内运动总路程提高,差异有统计学意义(均P<0.05)。结论:电针能够抑制肝郁脾虚型抑郁症大鼠小胶质细胞活化,其作用机制可能与抑制HMGB1/RAGE/TLR4通路有关。 展开更多
关键词 抑郁症 肝郁脾虚型 电针 高迁移率族蛋白盒1 晚期糖基化终产物 toll样受体4通路 小胶质细胞
下载PDF
Synthesis and Structural Characterization of 2,3-Bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol 被引量:3
17
作者 毕福强 王伯周 +4 位作者 樊学忠 许诚 葛忠学 刘庆 张国防 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第3期415-419,共5页
2,3-Bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol(C6H12N2O8) was synthesized by condensation,cyclization,oxidative dimerization and deketalization of nitromethane with a total yield of 42.4%.The structure of the t... 2,3-Bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol(C6H12N2O8) was synthesized by condensation,cyclization,oxidative dimerization and deketalization of nitromethane with a total yield of 42.4%.The structure of the title compound was characterized by 1H NMR,13C NMR,FT-IR,elementary analysis,and X-ray single-crystal diffraction analysis,which reveals that the title compound crystallizes in triclinic,space group P with a = 0.6324(2),b = 0.6454(3),c = 0.7062(3) nm,α= 111.550(4),β= 95.505(4),γ= 113.395(4)°,V = 0.23595(16) nm3,Z = 1,Mr = 240.18,Dc = 1.690 g·cm-3,μ = 0.159 mm-1,F(000) = 126,R = 0.0304 and wR = 0.0907. 展开更多
关键词 2 3-bis(hydroxymethyl)-2 3-dinitro-1 4-butanediol SYNTHESIS characterization crystal structure
下载PDF
Advanced Glycation End Products Promote Differentiation of CD4^+ T Helper Cells toward Pro-inflammatory Response 被引量:5
18
作者 韩晓群 龚作炯 +5 位作者 徐三清 李汛 王立坤 伍仕敏 吴建红 杨华芬 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2014年第1期10-17,共8页
This study investigated the effect of advanced glycation end products(AGEs) on differentiation of na ve CD4+T cells and the role of the receptor of AGEs(RAGE) and peroxisome proliferator-activated receptors(PPAR... This study investigated the effect of advanced glycation end products(AGEs) on differentiation of na ve CD4+T cells and the role of the receptor of AGEs(RAGE) and peroxisome proliferator-activated receptors(PPARs) activity in the process in order to gain insight into the mechanism of immunological disorders in diabetes. AGEs were prepared by the reaction of bovine serum albumin(BSA) with glucose. Human na ve CD4+T cells, enriched from blood of healthy adult volunteers with negative selection assay, were cultured in vitro and treated with various agents including AGEs, BSA, high glucose, PGJ2 and PD68235 for indicated time. In short hairpin(sh) RNA knock-down experiment, na ve CD4+T cells were transduced with media containing shRNA-lentivirus generated from lentiviral packaging cell line, Lent-XTM293 T cells. Surface and intracellular cytokine stainings were used for examination of CD4+T cell phenotypes, and real-time PCR and Western blotting for detection of transcription factor mRNA and protein expression, respectively. The suppressive function of regulatory T(Treg) cells was determined by a [3H]-thymidine incorporation assay. The results showed that AGEs induced higher pro-inflammatory Th1/Th17 cells differentiated from na ve CD4+T cells than the controls, whereas did not affect anti-inflammatory Treg cells. However, AGEs eliminated suppressive function of Treg cells. In addition, AGEs increased RAGE mRNA expression in na ve CD4+T cells, and RAGE knock-down by shRNA eliminated the effect of AGEs on the differentiation of CD4+T cells and the reduction of suppressive function of Treg cells. Furthermore, AGEs inhibited the mRNA expression of PPARγ, not PPARα; PPARγ agonist, PGJ2, inhibited the effect of AGEs on na ve CD4+T cell differentiation and reversed the AGE-reduced suppressive function of Treg cells; on the other hand, PPARγ antagonist, PD68235, attenuated the blocking effect of RAGE shRNA on the role of AGEs. It was concluded that AGEs may promote CD4+T cells development toward pro-inflammatory state, which is associated with increased RAGE mRNA expression and reduced PPARγ activity. + 展开更多
关键词 DIABETES advanced glycation end products CD4T cell subsets pro-inflammatory re-sponse
下载PDF
Controllable photochemical synthesis of amorphous Ni(OH)2 as hydrogen production cocatalyst using inorganic phosphorous acid as sacrificial agent 被引量:2
19
作者 Dandan Li Yuming Dong +7 位作者 Guangli Wang Pingping Jiang Feiyan Zhang Huizhen Zhang Ji Li Jinze Lyu Yan Wang Qingyun Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第5期889-897,共9页
Loading of cocatalysts can effectively inhibit the recombination of photogenerated carriers in photocatalysts and greatly improve the photocatalytic hydrogen production rate. Cocatalysts can be deposited at the outlet... Loading of cocatalysts can effectively inhibit the recombination of photogenerated carriers in photocatalysts and greatly improve the photocatalytic hydrogen production rate. Cocatalysts can be deposited at the outlet points of electrons using a photochemical method, which is beneficial for the following photocatalytic hydrogen production reaction. H2PO2^– has been used in the photochemical reduction of transition metals because of its special properties. However, the particles formed in the presence of H2PO2^– are very large and highly crystalline, which may inhibit the activity of photocatalysts. In this study, we designed a new method for synthesizing photocatalysts by photodeposition using some other phosphates, aiming to prepare controllable weakly crystalline and small-size cocatalysts to improve the hydrogen production activity. The cocatalyst prepared using H2PO3^– as an inorganic sacrificial agent has an amorphous structure and an average size of about 10 nm. The optimal photocatalytic hydrogen production rate of the obtained Ni(OH)2/g-C3N4(4.36 wt%) is 13707.86 μmol·g^-1·h^-1, which is even higher than the activity of Pt-4.36 wt%/g-C3N4(11210.93 μmol·g^-1·h^-1). Mechanistic studies show that loading of Ni(OH)2 can efficiently accelerate the separation and transfer efficiency of photogenerated charge carriers. 展开更多
关键词 Photocatalysis PHOTODEPOSITION Hydrogen production Water splitting Ni(OH)2/g-C3N4
下载PDF
Co-ordinated combination of Embden-Meyerhof-Parnas pathway and pentose phosphate pathway in Escherichia coli to promote L-tryptophan production 被引量:1
20
作者 SHUAI LIU JIANZHONG XU +2 位作者 TINGSHAN LIU ZHIMING RAO WEIGUO ZHANG 《BIOCELL》 SCIE 2022年第10期2303-2313,共11页
In this study,phosphoenolpyruvate and erythrose-4-phosphate are efficiently supplied by collaborative design of Embden-Meyerhof-Parnas(EMP)pathway and pentose phosphate(PP)pathway in Escherichia coli,thus increasing t... In this study,phosphoenolpyruvate and erythrose-4-phosphate are efficiently supplied by collaborative design of Embden-Meyerhof-Parnas(EMP)pathway and pentose phosphate(PP)pathway in Escherichia coli,thus increasing the L-tryptophan production.Firstly,the effects of disrupting EMP pathway on L-tryptophan production were studied,and the results indicated that the strain with deletion of phosphofructokinase A(i.e.,E.coli JW-5ΔpfkA)produced 23.4±2.1 g/L of L-tryptophan production.However,deletion of phosphofructokinase A and glucosephosphate isomerase is not conducive to glucose consumption and cell growth,especially deletion of glucosephosphate isomerase.Next,the carbon flux in PP pathway was enhanced by introduction of the desensitized glucose-6-phosphate dehydrogenase(zwf)and 6-phosphogluconate dehydrogenase(gnd)and thus increasing the L-tryptophan production(i.e.,26.5±3.2 g/L vs.21.7±1.3 g/L)without obviously changing the cell growth(i.e.,0.41 h^(-1) vs.0.44 h^(-1))as compared with the original strain JW-5.Finally,the effects of co-modifying EMP pathway and PP pathway on L-tryptophan production were investigated.It was found that the strain with deletion of phosphofructokinase A as well as introduction of the desensitized zwf and gnd(i.e.,E.coli JW-5 zwf243 gnd361ΔpfkA)produced 31.9±2.7 g/L of L-tryptophan,which was 47.0%higher than that of strain JW-5.In addition,the glucose consumption rate of strain JW-5 zwf243 gnd361ΔpfkA was obviously increased despite of the bad cell growth as compared with strain JW-5.The results of this study have important reference value for the following application of metabolic engineering to improve aromatic amino acids producing strains. 展开更多
关键词 Escherichia coli L-tryptophan production PHOSPHOENOLPYRUVATE Erythrose-4-phosphate Collaborative design
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部