The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In t...The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In this study,alongside thermochronological analyses,we examine the macroscopic and microscopic structural features of the Rongxian ductile shear zone,located south of the Darongshan granite in the southeastern part of Guangxi Province,on the southern margin of South China.Sinistral shear is indicated by the characteristics of rotatedσ-type feldspar porphyroclasts,stretching lineations defined by elongated quartz grains and the orientations of quartz c-axes.LA-ICP-MS U-Pb dating of zircons from two samples of granitic mylonite and one of granite yielded ages of ca.256 Ma.Furthermore,two samples of granitic mylonite yield muscovite^(40)Ar/^(39)Ar plateau ages of 249-246 Ma.These results indicate that the Rongxian ductile shear zone resulted from Early Triassic deformation of the late Permian Darongshan granite.This deformation was likely related to the closure of the eastern Paleo-Tethys Ocean and the subsequent collision of the South China and Indochina blocks,during the early stage of the Indosinian orogeny.展开更多
The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jita...The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jitang metamorphic complex was determined.The macro-and microstructural analyses of the ductile detachment shear zone(Guoxuepu ductile shear zone,2–4 km wide)between the metamorphic complex and the overlying sedimentary cap show that the shear sense of the ductile shear zones is top-to-the-southeast.The presence of various deformation features and quartz C-axis electron backscatter diffraction(EBSD)fabric analysis suggests multiple deformation events occurring at different temperatures.The average stress is 25.68 MPa,with the strain rates(έ)ranging from 9.77×10^(−14)s^(−1)to 6.52×10^(−16)s^(−1).The finite strain of the Guoxuepu ductile shear zone indicates an elongated strain pattern.The average kinematic vorticity of the Guoxuepu ductile shear zone is 0.88,implying that the shear zone is dominated by simple shear.The muscovite selected from the protomylonite samples in the Guoxuepu ductile shear zone yields a 40Ar-39Ar age of 60.09±0.38 Ma.It is suggested that,coeval with the initial Indo–Eurasian collision,the development of strike-slip faults led to a weak and unstable crust,upwelling of lower crust magma,then induced the detachment of the Jitang metamorphic complex in the Eocene.展开更多
The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicat...The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicate that the porphyry mineralization was closely related to the Early Cretaceous intermediate-felsic intrusions(ca. 123–120 Ma). Various epithermal ore and gangue mineral types were discovered in the middle-shallow part of the orebody, indicating the presence of epithermal mineralization at Tiegelongnan. Potassic, propylitic, phyllic and advanced argillic alteration zones were identified. 40Ar/39Ar dating of hydrothermal biotite(potassic zone), sericite(phyllic zone), and alunite(advanced argillic zone) in/around the ore-bearing granodiorite porphyry yielded 121.1±0.6 Ma(1σ), 120.8±0.7 Ma(1σ) and 117.9±1.6 Ma(1σ), respectively. Five hydrothermal mineralization stages were identified, of which the Stage IV pyrite was Rb-Sr dated to be 117.5±1.8 Ma(2σ), representing the end of epithermal mineralization. Field geology and geochronology suggest that both the epithermal and porphyry mineralization belong to the same magmatic-hydrothermal system. The Tiegelongnan super-large Cu-(Au) deposit may have undergone a prolonged magmatichydrothermal evolution, with the major mineralization event occurring at ca.120–117Ma.展开更多
The Zhuxi W(Cu)skarn deposit,the world’s largest tungsten deposit is newly discovered in Jingdezhen city,northeastern Jiangxi province,China.It mainly occurs near the contact zone between the Yanshanian granites and ...The Zhuxi W(Cu)skarn deposit,the world’s largest tungsten deposit is newly discovered in Jingdezhen city,northeastern Jiangxi province,China.It mainly occurs near the contact zone between the Yanshanian granites and the Late Paleozoic carbonate rocks.Three types of mineralization including skarn type,altered granite type and quartz vein veinlet type orebodies have been observed.In this study,the 40Ar 39Ar age of hydrothermal muscovite coexisting with copper mineralization in the altered granite type orebody formed near the unconformity interface is determined by step-heating technology using CO2 laser.The plateau age,isochron age,and inverse isochron age of muscovite are(147.39±0.94)Ma,(147.2±1.5)Ma,and(147.1±1.5)Ma,respectively.These ages are almost identical to the ages of ore-related granite and other mineralization types in the Zhuxi W(Cu)deposit,indicating that the Cu mineralizations occurred at the shallow depth and near the unconformity interface are contemporaneous during the Late Jurassic.This further suggested that the acompanied W and Cu mineralization in the Zhuxi W(Cu)deposit which may be controlled by the magma source is enriched in both W and Cu.展开更多
The 40Ar-39Ar age method is employed in this work to analyze fluid inclusions of quartz in the ore bodies from the Kuo'erzhenkuola and Bu'erkesidai gold deposits in the Sawur gold belt, northern Xinjiang. The ...The 40Ar-39Ar age method is employed in this work to analyze fluid inclusions of quartz in the ore bodies from the Kuo'erzhenkuola and Bu'erkesidai gold deposits in the Sawur gold belt, northern Xinjiang. The results show that the main mineralization occurred in 332.05±2.02-332.59±0.51 Ma and 335.53±0.32 Ma-336.78±0.50 Ma for the Kuo'erzhenkuola and Bu'erkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic time of the two deposits are close to those of the hosting rocks formed by volcanic activity of the Sawur gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits, and identifies that in the Hercynian period, the Altay area developed a tectonic-magmatic-hydrothermal mineralization of the Early Carboniferous period, except the two known mineralization periods including the tectonic-magmatic-hydrothermal mineralization of the Devonian period and Late Carboniferous- Permian period.展开更多
The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the mai...The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the main paleo-Pearl River Delta. The delta developed for a long geological time and formed a superimposed area. Almost all the oil and gas fields of detrital rock reservoir distribute in this delta. Thirty-three oil sandstone core samples in the Zhujiang Formation, lower Miocene (23-16 Ma), were collected from nine wells. The illite samples with detrital K feldspar (Kfs) separated from these sandstone cores in four sub-structural belts were analysed by the high-precision 40Ar/39Ar laser stepwise heating technique. All 33 illite 40Ar/39Ar data consistently yielded gradually rising age spectra at the low-temperature steps until reaching age plateaus at mid-high temperature steps. The youngest ages corresponding to the beginning steps were interpreted as the hydrocarbon accumulation ages and the plateau ages in mid-high temperature steps as the contributions of the detrital feldspar representing the ages of the granitic parent rocks in the provenances. The ages of the detrital feldspar from the Zhujiang Formation in the four sub-structural belts were different: (1) the late Cretaceous ages in the Lufeng 13 fault structural belt; (2) the late Cretaceous and early Cretaceous-Jurassic ages in the Huizhou 21 buried hill-fault belt; (3) the Jurassic and Triassic ages in the Xijiang 24 buried hill-fault belt; and (4) the early Cretaceous - late Jurassic ages in the Panyu 4 oil area. These detrital feldspar 4~Ar/39Ar ages become younger and younger from west to east, corresponding to the age distribution of the granites in the adjacent Guangdong Province, Southern China.展开更多
By using the 40Ar-39Ar chronological method to date K-feldspar from K-feldspar granite in the Qiaohuote copper district, the authors obtained a plateau age of 274.78±0.44 Ma and an isochron age of 272.7±3.0 ...By using the 40Ar-39Ar chronological method to date K-feldspar from K-feldspar granite in the Qiaohuote copper district, the authors obtained a plateau age of 274.78±0.44 Ma and an isochron age of 272.7±3.0 Ma. Because there is no tectonic deformation overprinted or hydrothermal alteration in the K-feldspar granite intrusion after its emplacement, the 40Ar-39Ar age represents the crystallization age of K-feldspar in K-feldspar granite, i.e. the late crystallization age of the K-feldspar granite intrusion, which indicates that the K-feldspar granite formed in the intraplate extensional stage during the Early Permian. Moreover, based on the spatial relationship between the K-feldspar granite intrusion and copper orebodies, variations of copper ore grade, REE characteristics of K-feldspar granite and copper ores, and H and O isotopic compositions of fluid inclusions in copper ores, the metallogenesis of the Qiaohuote copper deposit is directly related to intrusive activities of the K-feldspar granite, and thus the crystallization age of K-feldspar in the granite approximately approaches the metallogenic epoch of the Qiaohuote copper deposit.展开更多
The Hengshan complex is located in the central part of SE China, which underwent rapid tectonic uplift in the Cretaceous just like many other complexes on the continent. (40)~Ar-(39)~Ar geochronological data from ...The Hengshan complex is located in the central part of SE China, which underwent rapid tectonic uplift in the Cretaceous just like many other complexes on the continent. (40)~Ar-(39)~Ar geochronological data from the Hengshan complex suggest that two episodes of crustal cooling/extension took place in this part of the continent during the Cretaceous time. The first stage of exhumation was active during ca. 136-125 Ma, with a cooling rate of 〉 10 ℃Ma. The second stage of exhumation happened at ca. 98-93 Ma, with a cooling rate of 〉 10 ℃/Ma. Considering the folding in the Lower Cretaceous sedimentary rocks and the regional unconformity underneath the Upper Cretaceous red beds, it is believed that the Cretaceous crustal extension in SE China was interrupted by a compressional event. The reversion to extension, shortly after this middle Cretaceous compression, led to the rapid cooling/exhumation of the Hengshan complex at ca. 98-93 Ma. The Cretaceous tectonic processes in the hinterland of SE China could be controlled by interactions between the continental margin and the Paleo-pacific plate.展开更多
A chronological study of seamount rocks in the South China Sea basin provides a great opportunity to understand the expansion and evolution history of the sea basin. In this paper, we analyzed the ^40Ar/^39Ar age of t...A chronological study of seamount rocks in the South China Sea basin provides a great opportunity to understand the expansion and evolution history of the sea basin. In this paper, we analyzed the ^40Ar/^39Ar age of trachytic samples collected from the Shuangfeng seamounts in the northwestern sub-basin of the South China Sea. The two samples yielded plateau ages of 23.80 ± 0.18 and 23.29 ± 0.22 Ma, respectively, which indicate magmatic activity in late Oligocene which helpful constraints the expansion time of the northwest sub-basin. Previous studies suggested that the northwestern sub-basin and southwestern sub-basin have experienced a relatively consistent expansion in the NW-SE direction followed by a late expansion of the eastern sub-basin. We concluded that the expansion of the northwestern sub-basin began prior to ca. 24 Ma, which also implicated magmatic events of a late or stop expansion of the northwestern sub-basin combined with our results of^40Ar/^39Ar age data and previous geophysical data.展开更多
We present new 40Ar-39Ar plagioclase crystallization ages from the dykes exposed at the northern slope of the Satpura Mountain range near Betul-Jabalpur-Pachmarhi area, - 800 km NE of the Western Ghats escarpment. Amo...We present new 40Ar-39Ar plagioclase crystallization ages from the dykes exposed at the northern slope of the Satpura Mountain range near Betul-Jabalpur-Pachmarhi area, - 800 km NE of the Western Ghats escarpment. Among the two plateau ages, the first age of 66.56 ± 0.42 Ma from a dyke near Mohpani village represents its crystallization age which is either slightly older or contemporaneous with the nearby Mandla lava flows (63-65 Ma). We suggest that the Mohpani dyke might be one of the feeders for the surrounding lava flows as these lavas are significantly younger than the majority of the main Deccan lavas of the Western Ghats (66.38-65.54 Ma). The second age of 56.95 -- 1.08 Ma comes from a younger dyke near Olini village which cuts across the lava flows of the area. The age correlates well with the Mandla lavas which are chemically similar to the uppermost Poladpur, Ambenali and Mahabaleshwar Formation lavas of SW Deccan. Our study shows that the dyke activities occurred in two phases, with the second one representing the terminal stage.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42262026,42072259).
文摘The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In this study,alongside thermochronological analyses,we examine the macroscopic and microscopic structural features of the Rongxian ductile shear zone,located south of the Darongshan granite in the southeastern part of Guangxi Province,on the southern margin of South China.Sinistral shear is indicated by the characteristics of rotatedσ-type feldspar porphyroclasts,stretching lineations defined by elongated quartz grains and the orientations of quartz c-axes.LA-ICP-MS U-Pb dating of zircons from two samples of granitic mylonite and one of granite yielded ages of ca.256 Ma.Furthermore,two samples of granitic mylonite yield muscovite^(40)Ar/^(39)Ar plateau ages of 249-246 Ma.These results indicate that the Rongxian ductile shear zone resulted from Early Triassic deformation of the late Permian Darongshan granite.This deformation was likely related to the closure of the eastern Paleo-Tethys Ocean and the subsequent collision of the South China and Indochina blocks,during the early stage of the Indosinian orogeny.
基金financially supported by the China Geological Survey Scientific Research Project(Grant Nos.DD20190167 and DD20190053)the National Natural Science Foundation of China(Grant No.42172259).
文摘The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone.Through structural-lithological mapping,structural analysis and laboratory testing,the composition of the Jitang metamorphic complex was determined.The macro-and microstructural analyses of the ductile detachment shear zone(Guoxuepu ductile shear zone,2–4 km wide)between the metamorphic complex and the overlying sedimentary cap show that the shear sense of the ductile shear zones is top-to-the-southeast.The presence of various deformation features and quartz C-axis electron backscatter diffraction(EBSD)fabric analysis suggests multiple deformation events occurring at different temperatures.The average stress is 25.68 MPa,with the strain rates(έ)ranging from 9.77×10^(−14)s^(−1)to 6.52×10^(−16)s^(−1).The finite strain of the Guoxuepu ductile shear zone indicates an elongated strain pattern.The average kinematic vorticity of the Guoxuepu ductile shear zone is 0.88,implying that the shear zone is dominated by simple shear.The muscovite selected from the protomylonite samples in the Guoxuepu ductile shear zone yields a 40Ar-39Ar age of 60.09±0.38 Ma.It is suggested that,coeval with the initial Indo–Eurasian collision,the development of strike-slip faults led to a weak and unstable crust,upwelling of lower crust magma,then induced the detachment of the Jitang metamorphic complex in the Eocene.
基金jointly sponsored by the Public Science and Technology Research Funds Projects,Ministry of Land Resources of the People’s Republic of China(project No.201511017 and 201511022-02)the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant No.YYWF201608)+3 种基金the National Natural Science Foundation of China(Grant No.41402178)Geological Survey Project of the China Geological Survey(project 1212011405040)Golden Dragon Mining Co.Ltd.(project XZJL-2013-JS03)China Scholarship Council
文摘The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicate that the porphyry mineralization was closely related to the Early Cretaceous intermediate-felsic intrusions(ca. 123–120 Ma). Various epithermal ore and gangue mineral types were discovered in the middle-shallow part of the orebody, indicating the presence of epithermal mineralization at Tiegelongnan. Potassic, propylitic, phyllic and advanced argillic alteration zones were identified. 40Ar/39Ar dating of hydrothermal biotite(potassic zone), sericite(phyllic zone), and alunite(advanced argillic zone) in/around the ore-bearing granodiorite porphyry yielded 121.1±0.6 Ma(1σ), 120.8±0.7 Ma(1σ) and 117.9±1.6 Ma(1σ), respectively. Five hydrothermal mineralization stages were identified, of which the Stage IV pyrite was Rb-Sr dated to be 117.5±1.8 Ma(2σ), representing the end of epithermal mineralization. Field geology and geochronology suggest that both the epithermal and porphyry mineralization belong to the same magmatic-hydrothermal system. The Tiegelongnan super-large Cu-(Au) deposit may have undergone a prolonged magmatichydrothermal evolution, with the major mineralization event occurring at ca.120–117Ma.
基金Project(41873059)supported by the National Natural Science Foundation of ChinaProject(JGMEDB [2017]78)supported by the Jiangxi Geological and Mineral Exploration and Development Bureau Foundation,China+2 种基金Project(2011BAB04B02)supported by the National Science and Technology Support Plan Project,ChinaProject(201411035)supported by the Welfare Research Program of Ministry of Land and Resources,ChinaProject(20150013)supported by Jiangxi Provincial Geological Exploration Fund Management Center,China
文摘The Zhuxi W(Cu)skarn deposit,the world’s largest tungsten deposit is newly discovered in Jingdezhen city,northeastern Jiangxi province,China.It mainly occurs near the contact zone between the Yanshanian granites and the Late Paleozoic carbonate rocks.Three types of mineralization including skarn type,altered granite type and quartz vein veinlet type orebodies have been observed.In this study,the 40Ar 39Ar age of hydrothermal muscovite coexisting with copper mineralization in the altered granite type orebody formed near the unconformity interface is determined by step-heating technology using CO2 laser.The plateau age,isochron age,and inverse isochron age of muscovite are(147.39±0.94)Ma,(147.2±1.5)Ma,and(147.1±1.5)Ma,respectively.These ages are almost identical to the ages of ore-related granite and other mineralization types in the Zhuxi W(Cu)deposit,indicating that the Cu mineralizations occurred at the shallow depth and near the unconformity interface are contemporaneous during the Late Jurassic.This further suggested that the acompanied W and Cu mineralization in the Zhuxi W(Cu)deposit which may be controlled by the magma source is enriched in both W and Cu.
基金the Innovative Project of the Chinese Academy of Sciences(Grant No.KZC3-Sw-137) 305 Project ofthe State Science and technology Program of China(GrantNo.2001BA609A-07-08).
文摘The 40Ar-39Ar age method is employed in this work to analyze fluid inclusions of quartz in the ore bodies from the Kuo'erzhenkuola and Bu'erkesidai gold deposits in the Sawur gold belt, northern Xinjiang. The results show that the main mineralization occurred in 332.05±2.02-332.59±0.51 Ma and 335.53±0.32 Ma-336.78±0.50 Ma for the Kuo'erzhenkuola and Bu'erkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic time of the two deposits are close to those of the hosting rocks formed by volcanic activity of the Sawur gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits, and identifies that in the Hercynian period, the Altay area developed a tectonic-magmatic-hydrothermal mineralization of the Early Carboniferous period, except the two known mineralization periods including the tectonic-magmatic-hydrothermal mineralization of the Devonian period and Late Carboniferous- Permian period.
基金supported by the National Natural Science Foundation of China (40972095)the NationalS & T Major Project (2008ZX05023-03)
文摘The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the main paleo-Pearl River Delta. The delta developed for a long geological time and formed a superimposed area. Almost all the oil and gas fields of detrital rock reservoir distribute in this delta. Thirty-three oil sandstone core samples in the Zhujiang Formation, lower Miocene (23-16 Ma), were collected from nine wells. The illite samples with detrital K feldspar (Kfs) separated from these sandstone cores in four sub-structural belts were analysed by the high-precision 40Ar/39Ar laser stepwise heating technique. All 33 illite 40Ar/39Ar data consistently yielded gradually rising age spectra at the low-temperature steps until reaching age plateaus at mid-high temperature steps. The youngest ages corresponding to the beginning steps were interpreted as the hydrocarbon accumulation ages and the plateau ages in mid-high temperature steps as the contributions of the detrital feldspar representing the ages of the granitic parent rocks in the provenances. The ages of the detrital feldspar from the Zhujiang Formation in the four sub-structural belts were different: (1) the late Cretaceous ages in the Lufeng 13 fault structural belt; (2) the late Cretaceous and early Cretaceous-Jurassic ages in the Huizhou 21 buried hill-fault belt; (3) the Jurassic and Triassic ages in the Xijiang 24 buried hill-fault belt; and (4) the early Cretaceous - late Jurassic ages in the Panyu 4 oil area. These detrital feldspar 4~Ar/39Ar ages become younger and younger from west to east, corresponding to the age distribution of the granites in the adjacent Guangdong Province, Southern China.
文摘By using the 40Ar-39Ar chronological method to date K-feldspar from K-feldspar granite in the Qiaohuote copper district, the authors obtained a plateau age of 274.78±0.44 Ma and an isochron age of 272.7±3.0 Ma. Because there is no tectonic deformation overprinted or hydrothermal alteration in the K-feldspar granite intrusion after its emplacement, the 40Ar-39Ar age represents the crystallization age of K-feldspar in K-feldspar granite, i.e. the late crystallization age of the K-feldspar granite intrusion, which indicates that the K-feldspar granite formed in the intraplate extensional stage during the Early Permian. Moreover, based on the spatial relationship between the K-feldspar granite intrusion and copper orebodies, variations of copper ore grade, REE characteristics of K-feldspar granite and copper ores, and H and O isotopic compositions of fluid inclusions in copper ores, the metallogenesis of the Qiaohuote copper deposit is directly related to intrusive activities of the K-feldspar granite, and thus the crystallization age of K-feldspar in the granite approximately approaches the metallogenic epoch of the Qiaohuote copper deposit.
基金supported by the basic outlay of scientific research work from the Ministry of Science and Technology(DZLXJK201302)the National Science and Technology Project(SinoProbe–08–01)the Chinese National Fund of Science grant(no.41202154)
文摘The Hengshan complex is located in the central part of SE China, which underwent rapid tectonic uplift in the Cretaceous just like many other complexes on the continent. (40)~Ar-(39)~Ar geochronological data from the Hengshan complex suggest that two episodes of crustal cooling/extension took place in this part of the continent during the Cretaceous time. The first stage of exhumation was active during ca. 136-125 Ma, with a cooling rate of 〉 10 ℃Ma. The second stage of exhumation happened at ca. 98-93 Ma, with a cooling rate of 〉 10 ℃/Ma. Considering the folding in the Lower Cretaceous sedimentary rocks and the regional unconformity underneath the Upper Cretaceous red beds, it is believed that the Cretaceous crustal extension in SE China was interrupted by a compressional event. The reversion to extension, shortly after this middle Cretaceous compression, led to the rapid cooling/exhumation of the Hengshan complex at ca. 98-93 Ma. The Cretaceous tectonic processes in the hinterland of SE China could be controlled by interactions between the continental margin and the Paleo-pacific plate.
基金supported by the National Natural Science Foundation of China(Grant Nos.91028006 and 41276055)the National Basic Research and Development Program(Grant Nos.2007CB411700,2013CB429700)China Ocean Mineral R&D Association(COMRA)project(DY125-12-R-02,04,06)
文摘A chronological study of seamount rocks in the South China Sea basin provides a great opportunity to understand the expansion and evolution history of the sea basin. In this paper, we analyzed the ^40Ar/^39Ar age of trachytic samples collected from the Shuangfeng seamounts in the northwestern sub-basin of the South China Sea. The two samples yielded plateau ages of 23.80 ± 0.18 and 23.29 ± 0.22 Ma, respectively, which indicate magmatic activity in late Oligocene which helpful constraints the expansion time of the northwest sub-basin. Previous studies suggested that the northwestern sub-basin and southwestern sub-basin have experienced a relatively consistent expansion in the NW-SE direction followed by a late expansion of the eastern sub-basin. We concluded that the expansion of the northwestern sub-basin began prior to ca. 24 Ma, which also implicated magmatic events of a late or stop expansion of the northwestern sub-basin combined with our results of^40Ar/^39Ar age data and previous geophysical data.
基金Department of Science and Technology,Government of India for financial support to this work(Project Grant No.ESS/16/286/2006)Post-Doctoral,D.S. Kothari Fellowship for financial support
文摘We present new 40Ar-39Ar plagioclase crystallization ages from the dykes exposed at the northern slope of the Satpura Mountain range near Betul-Jabalpur-Pachmarhi area, - 800 km NE of the Western Ghats escarpment. Among the two plateau ages, the first age of 66.56 ± 0.42 Ma from a dyke near Mohpani village represents its crystallization age which is either slightly older or contemporaneous with the nearby Mandla lava flows (63-65 Ma). We suggest that the Mohpani dyke might be one of the feeders for the surrounding lava flows as these lavas are significantly younger than the majority of the main Deccan lavas of the Western Ghats (66.38-65.54 Ma). The second age of 56.95 -- 1.08 Ma comes from a younger dyke near Olini village which cuts across the lava flows of the area. The age correlates well with the Mandla lavas which are chemically similar to the uppermost Poladpur, Ambenali and Mahabaleshwar Formation lavas of SW Deccan. Our study shows that the dyke activities occurred in two phases, with the second one representing the terminal stage.