期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
On triangular algebras with noncommutative diagonals 被引量:6
1
作者 DONG AiJu Department of Mathematics, Xi’an University of Arts and Science, Xi’an 710065, China 《Science China Mathematics》 SCIE 2008年第10期1937-1944,共8页
We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections. Moreover we prove that our triangular algebra is maximal.
关键词 triangular algebra von Neumann algebra reflexive algebra reflexive lattice 47L75 46l10
原文传递
Local 3-cocycles of von Neumann algebras
2
作者 Cheng-jun HOU~(1+) Ben-yin FU~2 1 School of Mathematical Sciences,Qufu Normal University,Qufu 273165,China 2 School of Mathematical Sciences,Fudan University,Shanghai 200433,China 《Science China Mathematics》 SCIE 2007年第9期1240-1250,共11页
We show that every local 3-cocycle of a von Neumann algebra $\mathcal{R}$ into an arbitrary unital dual $\mathcal{R}$ -bimodule $\mathcal{S}$ is a 3-cocycle.
关键词 von Neumann algebra dual bimodule local 3-cocycle 3-cocycle 46l10
原文传递
On maximal injective subalgebras in a wΓ factor
3
作者 HOU ChengJun School of Mathematical Sciences, Qufu Normal University, Shandong 273165, China 《Science China Mathematics》 SCIE 2008年第11期2089-2096,共8页
Let $ \mathcal{L} $ (F ?) × α ? be the crossed product von Neumann algebra of the free group factor $ \mathcal{L} $ (F ?), associated with the left regular representation λ of the free group F ? with the set {u... Let $ \mathcal{L} $ (F ?) × α ? be the crossed product von Neumann algebra of the free group factor $ \mathcal{L} $ (F ?), associated with the left regular representation λ of the free group F ? with the set {u r : r ∈ ?} of generators, by an automorphism α defined by α(λ(u r )) = exp(2πri)λ(u r ), where ? is the rational number set. We show that $ \mathcal{L} $ (F ?) × α ? is a wΓ factor, and for each r ∈ ?, the von Neumann subalgebra $ \mathcal{A}_r $ generated in $ \mathcal{L} $ (F ?) × α ? by λ(u r ) and υ is maximal injective, where υ is the unitary implementing the automorphism α. In particular, $ \mathcal{L} $ (F ?) × α ? is a wΓ factor with a maximal abelian selfadjoint subalgebra $ \mathcal{A}_0 $ which cannot be contained in any hyperfinite type II1 subfactor of $ \mathcal{L} $ (F ?) × α ?. This gives a counterexample of Kadison’s problem in the case of wΓ factor. 展开更多
关键词 von Neumann algebra maximal injective subalgebra crossed product factor 46l10
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部