KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the ele...KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the electron/ion transfer by tuning electronic structure,thus providing favorable electrochemical performance.Herein,through the regulation of surface defect engineering in reduced graphene oxide(rGO),the Fe–C bonds were formed between KFSF and rGO.The Fe–C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF.Thus,the KFSF@rGO delivers a high capacity of 119.6 mAh g^(-1).When matched with a graphite@pitch-derived S-doped carbon anode,the full cell delivers an energy density of 250.5 Wh kg^(-1) and a capacity retention of 81.5%after 400 cycles.This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites.展开更多
Dynamic nonlinearities of C70/toluene solution are measured and analysed by an improved picosecond timeresolved pump-probe system based on a nonlinear imaging technique with phase object. The photophysical parameters ...Dynamic nonlinearities of C70/toluene solution are measured and analysed by an improved picosecond timeresolved pump-probe system based on a nonlinear imaging technique with phase object. The photophysical parameters are determined by the five-level model, which is adopted to interpret the experimental data. The change of refraction index per unit density of the excited state obtained by a numerically simulation is a critical factor to determine the nonlinear behaviour of C70 in picosecond time regime.展开更多
基金support from the National Key R&D Program of China(Grant No.2023YFE0202000)National Natural Science Foundation of China(Grant No.52102213)Science Technology Program of Jilin Province(Grant No.20230101128JC).
文摘KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the electron/ion transfer by tuning electronic structure,thus providing favorable electrochemical performance.Herein,through the regulation of surface defect engineering in reduced graphene oxide(rGO),the Fe–C bonds were formed between KFSF and rGO.The Fe–C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF.Thus,the KFSF@rGO delivers a high capacity of 119.6 mAh g^(-1).When matched with a graphite@pitch-derived S-doped carbon anode,the full cell delivers an energy density of 250.5 Wh kg^(-1) and a capacity retention of 81.5%after 400 cycles.This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites.
基金Project supported by the National Natural Science Fundation of China(Grant No.90922007)
文摘Dynamic nonlinearities of C70/toluene solution are measured and analysed by an improved picosecond timeresolved pump-probe system based on a nonlinear imaging technique with phase object. The photophysical parameters are determined by the five-level model, which is adopted to interpret the experimental data. The change of refraction index per unit density of the excited state obtained by a numerically simulation is a critical factor to determine the nonlinear behaviour of C70 in picosecond time regime.