期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells 被引量:5
1
作者 Wei Wei Hui-Hui Sun +4 位作者 Na Li Hong-Yue Li Xin Li Qiang Li Xiao-Hong Shen 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2014年第5期529-538,共10页
BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5 A and chemoresistance in pancreatic cancer are rare. The present study was to examine ... BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5 A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5 A in the regulation of cell cycle progression and in chemoresistance in pancreatic cancer tissues and cell lines.METHODS: Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5 A,AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry,and the correlation between WNT5 A expression and clinicopathological characteristics was analyzed. The relationship between WNT5 A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5 A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT,Cyclin D1 and WNT5 A were also analyzed in cell lines and the effect of WNT5 A on restriction-point(R-point) progression was evaluated.RESULTS: WNT5 A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5 A expression was correlated with the TNM stages. In vitroWNT5 A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5 A in PANC-1. WNT5 A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5 A enhanced the cell cycle progression toward R-point through regulation ofretinoblastoma protein(pRb) and pRb-E2 F complex formation.CONCLUSIONS: WNT5 A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5 A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy. 展开更多
关键词 WNT5A pancreatic cancer chemoresistance cell cycle
下载PDF
5-aza-2'-deoxycitydine induces demethylation and up-regulates transcription of p16^(INK4A) gene in human gastric cancer cell lines 被引量:21
2
作者 房静远 杨丽 +5 位作者 朱红音 陈萦晅 陆娟 陆嵘 程中华 萧树东 《Chinese Medical Journal》 SCIE CAS CSCD 2004年第1期99-103,共5页
Background To investigate the effects of DNA methylation on the expression of tumor-associated genes and the cell cycle in human gastric cancer cells. Methods Two gastric cancer cell lines (MKN-45 and HGC-27) we... Background To investigate the effects of DNA methylation on the expression of tumor-associated genes and the cell cycle in human gastric cancer cells. Methods Two gastric cancer cell lines (MKN-45 and HGC-27) were treated with DNA methyltransferase (DNMT) inhibitor,5-aza-2’-deoxycytidine (5-aza-dC). The expressions of p16 INK4A,p21 WAF1,p53 , p73 ,c-Ha-ras and c-myc genes mRNA were detected by using reverse transcription PCR (RT-PCR). DNA methylation status of p16 INK4A gene promoter was assayed by bisulfite modification and sequencing. The cell cycle was analyzed by using flow cytometry (FCM). Results 5-aza-dC induced the demethylation of p16 INK4A gene promoter. The expression of p16 INK4A mRNA was obviously up-regulated by treatment with 10 μmol/L (MKN-45 cells) or 5 μmol/L (HGC-27 cells) of 5-aza-dC for 24 hours. However,5-aza-dC treatment failed to regulate the expressions of p21 WAF1,p53 , p73 ,c-Ha-ras and c-myc genes in MKN-45 and HGC-27 cells. Furthermore,5-aza-dC induced the cell cycle arrest in G1 phase in HGC-27 cell,but not in MKN-45 cell. Conclusions DNA methylation regulates the transcription of p16 INK4A but not p21 WAF1 and proto-oncogenes in human gastric cancer cell lines MKN-45 and HGC-27. 展开更多
关键词 gastric cancer·DNA methylation·5-aza-2'-deoxycytidine·gene expression·cell cycle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部