Variants of the arachidonate 5-1ipoxygenase-activating protein (ALOX5AP) gene have been suggested to play an important role in the pathogenesis of atherosclerosis and ischemic stroke. This study was aimed to explore...Variants of the arachidonate 5-1ipoxygenase-activating protein (ALOX5AP) gene have been suggested to play an important role in the pathogenesis of atherosclerosis and ischemic stroke. This study was aimed to explore the association of ALOX5AP variants with ischemic stroke risk in Han Chinese of eastern China. A total of 690 ischemic stroke cases and 767 controls were recruited. The subjects were further subtyped according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria. On the basis of that, two polymorphisms of the ALOX5AP gene (rs10507391 and rs12429692) were determined by TaqMan genotyping assay. In addition, plasma leukotriene B4 (LTB4) levels were analyzed in these subjects. There was no evidence of association between the two variants of ALOX5AP and the risk of ischemic stroke or its TOAST-subtypes. Haplotype analysis and stratification analysis according to sex, age, body mass index, hypertension, and diabetes also showed negative association. Analysis of LTB4 levels in a subset of cases and controls revealed that LTB4 levels were significantly higher in ischemic stroke cases than in the controls (70.06± 14.75 ng/L vs 57.34±10.93 ng/L; P = 0.000) and carriers of the T allele of the rs10507391 variant were associated with higher plasma LTB4 levels (P = 0.000). The present study suggests there is no association of the two polymorphisms in the ALOX5AP gene with ischemic stroke risk in Han Chinese of eastern China.展开更多
A preliminary study has found that the 5-lipoxygenase inhibitor, caffeic acid, has a marked protective effect on acute brain injury induced by intracerebroventricular microinjection of aluminum. In this experiment, ch...A preliminary study has found that the 5-lipoxygenase inhibitor, caffeic acid, has a marked protective effect on acute brain injury induced by intracerebroventricular microinjection of aluminum. In this experiment, chronic brain injury and neuronal degeneration model was established in rats by chronic oral administration of aluminum, and then intervened using caffeic acid. Results showed that caffeic acid can downregulate chronic aluminum overload-induced 5-1ipoxygenase mRNA and protein expression, and repair the aluminum overload-induced hippocampal neuronal damage and spatial orientation impairment. It is suggested that direct intervention of 5-lipoxygenase expression has a neuroprotective role in the degeneration induced by chronic aluminum overload brain injury model.展开更多
Brian ischemic injury and central neurodegenerative diseases as leading contributors to disability and death have become a majorclinical and public health concern worldwide.Neuroinflammation plays a pivotal role in th...Brian ischemic injury and central neurodegenerative diseases as leading contributors to disability and death have become a majorclinical and public health concern worldwide.Neuroinflammation plays a pivotal role in the pathological progression of cerebral ischemia and neurodegenerative diseases including Parkinson disease(PD).Therefore,it is important to find effective therapeutic targets to attenuate inflammation and delay the progression of brain injury.Cysteinyl leukotrienes(CysLTs) are potent inflammatory mediators synthesized from arachidonic acid by 5-lipoxygenase(5-LOX) in the central nervous system.Two distinct G-protein-coupled receptors,CysLT1 R and CysLT2 R,mediate most of the known CysLTs biological responses.Accumulating evidence has demonstrated that postischemic inflammation and neuronal loss are mediated by 5-LOX and CysLTRs fol owing focal cerebral ischemia.We recently reported that the expression of 5-LOX,CysLT1R and inflammatory vascular cell adhesion molecule-1(VCAM-1) was upregulated in the hippocampus of rats with transient global cerebral ischemia,which was closely associated with delayed neuronal death in the hippocampal CA1 area.5-LOX inhibitor zileuton,CysLT1R antagonist ONO-1078 and montelukast dose-dependently reduced hippocampal CA1 neuronal death and inhibited the increased expression of 5-LOX and VCAM-1.In vitro ischemia-like injury in 5-LOXtransfected PC12 cells,oxygen-glucose deprivation(OGD) induced cell death mediated by5-LOX via ROS/P38 MAPK pathway.The nonselective 5-LOX inhibitor caffeic acid inhibited OGDstimulated activation of 5-LOX and ROS/P38 MAPK signaling and improved neuronal survival.In PD model,high concentrations of rotenone caused directly PC12 neurotoxicity,which was modulated by 5-LOX and abolished by suppression of 5-LOX.It is well known that microglia is major modulators of inflammatory response after brain injury.Overactivated microglia and production of proinflammatory cytokine IL-1β,IL-6 and TNF-α contribute to the neuroinflammation and brain injury.5-LOX,CysLT1R and CysLT2R are involved in microglial activation and resultant neurotoxic responses.It has been found that low concentrations of rotenone can activate 5-LOX and CysLT1R on microglial cells to enhance microglial inflammation and microglia-dependent neuronal death in vitro.5-LOX inhibitor zileuton and CysLT1R antagonist montelukast protected neurons from microglia-dependent rotenone neurotoxicity.Furthermore,lipopolysaccharide(LPS)induced microglial activation and microglial neurotoxicity mediated by CysLT2R in vitro.Both pharmacological blockade(CysLT2R antagonist HAMI3379) and RNA interference(specific short hairpin RNA) of CysLT2 R significantly attenuated LPS-triggered microglial inflammation and subsequent neuronal death.Collectively,the present results indicate the role of 5-LOX and CysLTRs in neuroinflammation and brain injury.Modulation of 5-LOX and CysLTRs may be potential therapeutic approaches for inflammation-related brain disorders such as cerebral ischemia and PD.However,further research is needed to clarify the mechanisms underlying the regulation of neuinflammatory processes by 5-LOX and CysLTRs.展开更多
OBJECTIVE Previously we demonstrated the neuroprotective effect of 5-lipoxygenase(5-LOX)inhibitor as well as cysteinyl leukotriene receptor 1(Cys LT1)antagoniston rotenone-induced microglial activation and neuronal de...OBJECTIVE Previously we demonstrated the neuroprotective effect of 5-lipoxygenase(5-LOX)inhibitor as well as cysteinyl leukotriene receptor 1(Cys LT1)antagoniston rotenone-induced microglial activation and neuronal death.In this study,we determined the effects of 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast on neurotoxicity induced by 1-methyl-4-phenylpyridine(MPP+)in an in vitro model of Parkinson disease(PD).METHODS The neurotoxicity of MPP+,a neurotoxin relevant to PD,on the PC12 cells was measured by MTT assay,lactate dehydrogenase(LDH)release and double fluorescence staining with Hoechst/propidiumiodide(PI).The protective effects of 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast were investigated by the above methods.RESULTS We found that exposure of PC12 cells to MPP+led to a reduced cell viability and an increased level of LDH in a concentration-dependent manner.Pretreatment with zileuton and montelukast significantly attenuated viability loss and LDH release in MPP+-treated PC12 cells.Furthermore,MPP+increasednecrotic cell death in PC12 cells.Administration of montelukast significantly decreased MPP+-induced cell necrosis in PC12 cells.CONCLUSION The 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast have a neuroprotective effects on MPP+-induced neurotoxicity in PC12 cells.The 5-LOX inhibitor and Cys LT1 antagonist might raise a possibility as potential therapeutic agent for PD and other inflammation-related the central nervous system disorders.展开更多
基金supported by a grant from the Health Bureau of Jiangsu Province (No. H201005)
文摘Variants of the arachidonate 5-1ipoxygenase-activating protein (ALOX5AP) gene have been suggested to play an important role in the pathogenesis of atherosclerosis and ischemic stroke. This study was aimed to explore the association of ALOX5AP variants with ischemic stroke risk in Han Chinese of eastern China. A total of 690 ischemic stroke cases and 767 controls were recruited. The subjects were further subtyped according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria. On the basis of that, two polymorphisms of the ALOX5AP gene (rs10507391 and rs12429692) were determined by TaqMan genotyping assay. In addition, plasma leukotriene B4 (LTB4) levels were analyzed in these subjects. There was no evidence of association between the two variants of ALOX5AP and the risk of ischemic stroke or its TOAST-subtypes. Haplotype analysis and stratification analysis according to sex, age, body mass index, hypertension, and diabetes also showed negative association. Analysis of LTB4 levels in a subset of cases and controls revealed that LTB4 levels were significantly higher in ischemic stroke cases than in the controls (70.06± 14.75 ng/L vs 57.34±10.93 ng/L; P = 0.000) and carriers of the T allele of the rs10507391 variant were associated with higher plasma LTB4 levels (P = 0.000). The present study suggests there is no association of the two polymorphisms in the ALOX5AP gene with ischemic stroke risk in Han Chinese of eastern China.
基金the National Natural Science Foundation of China, No. 30672211
文摘A preliminary study has found that the 5-lipoxygenase inhibitor, caffeic acid, has a marked protective effect on acute brain injury induced by intracerebroventricular microinjection of aluminum. In this experiment, chronic brain injury and neuronal degeneration model was established in rats by chronic oral administration of aluminum, and then intervened using caffeic acid. Results showed that caffeic acid can downregulate chronic aluminum overload-induced 5-1ipoxygenase mRNA and protein expression, and repair the aluminum overload-induced hippocampal neuronal damage and spatial orientation impairment. It is suggested that direct intervention of 5-lipoxygenase expression has a neuroprotective role in the degeneration induced by chronic aluminum overload brain injury model.
基金The project supported by National Natural Science Foundation of China(81671188)Zhejiang Provincial Natural Science Foundation of China(LY12H31010)Key Laboratory of Hangzhou City Project(20090233T12)
文摘Brian ischemic injury and central neurodegenerative diseases as leading contributors to disability and death have become a majorclinical and public health concern worldwide.Neuroinflammation plays a pivotal role in the pathological progression of cerebral ischemia and neurodegenerative diseases including Parkinson disease(PD).Therefore,it is important to find effective therapeutic targets to attenuate inflammation and delay the progression of brain injury.Cysteinyl leukotrienes(CysLTs) are potent inflammatory mediators synthesized from arachidonic acid by 5-lipoxygenase(5-LOX) in the central nervous system.Two distinct G-protein-coupled receptors,CysLT1 R and CysLT2 R,mediate most of the known CysLTs biological responses.Accumulating evidence has demonstrated that postischemic inflammation and neuronal loss are mediated by 5-LOX and CysLTRs fol owing focal cerebral ischemia.We recently reported that the expression of 5-LOX,CysLT1R and inflammatory vascular cell adhesion molecule-1(VCAM-1) was upregulated in the hippocampus of rats with transient global cerebral ischemia,which was closely associated with delayed neuronal death in the hippocampal CA1 area.5-LOX inhibitor zileuton,CysLT1R antagonist ONO-1078 and montelukast dose-dependently reduced hippocampal CA1 neuronal death and inhibited the increased expression of 5-LOX and VCAM-1.In vitro ischemia-like injury in 5-LOXtransfected PC12 cells,oxygen-glucose deprivation(OGD) induced cell death mediated by5-LOX via ROS/P38 MAPK pathway.The nonselective 5-LOX inhibitor caffeic acid inhibited OGDstimulated activation of 5-LOX and ROS/P38 MAPK signaling and improved neuronal survival.In PD model,high concentrations of rotenone caused directly PC12 neurotoxicity,which was modulated by 5-LOX and abolished by suppression of 5-LOX.It is well known that microglia is major modulators of inflammatory response after brain injury.Overactivated microglia and production of proinflammatory cytokine IL-1β,IL-6 and TNF-α contribute to the neuroinflammation and brain injury.5-LOX,CysLT1R and CysLT2R are involved in microglial activation and resultant neurotoxic responses.It has been found that low concentrations of rotenone can activate 5-LOX and CysLT1R on microglial cells to enhance microglial inflammation and microglia-dependent neuronal death in vitro.5-LOX inhibitor zileuton and CysLT1R antagonist montelukast protected neurons from microglia-dependent rotenone neurotoxicity.Furthermore,lipopolysaccharide(LPS)induced microglial activation and microglial neurotoxicity mediated by CysLT2R in vitro.Both pharmacological blockade(CysLT2R antagonist HAMI3379) and RNA interference(specific short hairpin RNA) of CysLT2 R significantly attenuated LPS-triggered microglial inflammation and subsequent neuronal death.Collectively,the present results indicate the role of 5-LOX and CysLTRs in neuroinflammation and brain injury.Modulation of 5-LOX and CysLTRs may be potential therapeutic approaches for inflammation-related brain disorders such as cerebral ischemia and PD.However,further research is needed to clarify the mechanisms underlying the regulation of neuinflammatory processes by 5-LOX and CysLTRs.
基金The project supported National Natural Science Foundation of China(81273491)the Zhejiang Provincial Natural Science Foundation(LY12H31010)
文摘OBJECTIVE Previously we demonstrated the neuroprotective effect of 5-lipoxygenase(5-LOX)inhibitor as well as cysteinyl leukotriene receptor 1(Cys LT1)antagoniston rotenone-induced microglial activation and neuronal death.In this study,we determined the effects of 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast on neurotoxicity induced by 1-methyl-4-phenylpyridine(MPP+)in an in vitro model of Parkinson disease(PD).METHODS The neurotoxicity of MPP+,a neurotoxin relevant to PD,on the PC12 cells was measured by MTT assay,lactate dehydrogenase(LDH)release and double fluorescence staining with Hoechst/propidiumiodide(PI).The protective effects of 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast were investigated by the above methods.RESULTS We found that exposure of PC12 cells to MPP+led to a reduced cell viability and an increased level of LDH in a concentration-dependent manner.Pretreatment with zileuton and montelukast significantly attenuated viability loss and LDH release in MPP+-treated PC12 cells.Furthermore,MPP+increasednecrotic cell death in PC12 cells.Administration of montelukast significantly decreased MPP+-induced cell necrosis in PC12 cells.CONCLUSION The 5-LOX inhibitor zileuton and Cys LT1 antagonist montelukast have a neuroprotective effects on MPP+-induced neurotoxicity in PC12 cells.The 5-LOX inhibitor and Cys LT1 antagonist might raise a possibility as potential therapeutic agent for PD and other inflammation-related the central nervous system disorders.