2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production o...2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production of FDCA through the oxidation of 5-hydroxymethylfurfural(HMF)and its derivatives is still rudimentary under base-free conditions.In this work,oxygen-vacancy-rich Mn Oxwas prepared and displayed a strong adsorption and anchoring ability to Ru species that mainly exposed the(210)plane of RuO_(2),bringing about highly dispersed and active interfacial Ru-O-Mn structures.Experimental results and density functional theory calculations confirm that these above features greatly facilitate the adsorption/activation of oxygen and the dehydrogenation-oxidation of HMF/5-methoxymethylfurfural(MMF),which enables an efficient FDCA production under base-free and mild conditions.Notably,a desirable FDCA yield of 86.56%was still obtained from concentrated HMF(10 wt%)under base-free conditions over oxygen-vacancy-rich Mn Oxsupported Ru Ox(1.0 MPaO_(2),120℃,6 h).This work delineates a facile catalyst preparation strategy for HMF/MMF oxidation,and might open a new avenue for the green synthesis of FDCA under base-free conditions.展开更多
Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport cha...Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.展开更多
The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalin...The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalination performance.Influences of inorganic acid type(H_(2)SO_(4),H_(3)PO_(4),HNO_(3),and HCl),H_(2)SO_(4)concentration(1-6 mol·L^(-1)),test temperature(60-90℃)and inorganic acid/inorganic salt type(2 mol·L^(-1)H_(2)SO_(4)and sulfate,2 mol·L^(-1)H3PO4 and phosphate)on the pervaporation performance are investigated in this work.Either for concentrating 3%(mass)H_(2)SO_(4)solution or consecutive dehydrating 20%(mass)H_(2)SO_(4)solution,the hydrophilic ZSM-5 zeolite membrane has a good dehydration performance and stability.Even though the H_(2)SO_(4)concentration and test temperature are increased to 6 M and 90℃,only H_(2)O molecules could pass through the membrane and pH value of the permeation is kept neutral.Besides,the membrane has good dehydration and desalination performance for H_(2)SO_(4)/sulfates and H_(3)PO_(4)/phosphate mixtures,and the rejection of natrium salt,molysite,and magnesium is almost 100%.展开更多
Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we re...Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we reported that PZH attenuated lipopolysaccharide(LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signalling.Mechanistically,PZH stimulated signal transducer and activator of transcription 3(STAT3)phosphorylation to induce the expression of A20,which could inhibit the activation of NF-κB and MAPK signalling.Knockdown of the bile acid(BA)receptor G protein-coupled bile acid receptor 1(TGR5)in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction,as well as the LPS-induced inflammatory response,suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5.Consistently,deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20,the activation of NF-κB and MAPK signalling,and the production of proinflammatory cytokines,whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines.Overall,our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.展开更多
Objective:To determine the efficacy and safety of the Yinmei Kuijie decoction combined with 5-ami-nosalicylic acid(5-ASA)in treating mildly to moderately active ulcerative colitis(UC)under real-world conditions.Method...Objective:To determine the efficacy and safety of the Yinmei Kuijie decoction combined with 5-ami-nosalicylic acid(5-ASA)in treating mildly to moderately active ulcerative colitis(UC)under real-world conditions.Methods:This multicenter,prospective,non-randomized,observational study will be conducted in real-world settings.A total of 204 eligible patients will be consecutively enrolled in the study.Patients in the combination treatment group will receive Yinmei Kuijie decoction in combination with 5-ASA,whereas those in the control group will be treated with 5-ASA alone.The primary endpoint will be a clinical response at week 12,defined as a≥3 point and≥30%reduction from baseline in the Mayo total score with≥1 reduction in rectal bleeding or rectal bleeding score=0 or 1.Secondary efficacy endpoints at week 12 will include health-related quality of life,mucosal healing,and inflammation indicators.Conclusion:The results of this study may provide evidence of the efficacy and safety of Yinmei Kuijie decoction combined with 5-ASA in treating patients with mildly to moderately active UC under real-world principles.The results will provide a basis for further confirmatory studies on the efficacy of Yinmei Kuijie decoction.展开更多
Strawberry Fusarium wilt (SFW) is a systematic soil-borne disease caused by Fusarium oxysporum f.sp.fragaria (Fof),which infects the vascular bundles,blocking water and nutrient transport from roots to the aboveground...Strawberry Fusarium wilt (SFW) is a systematic soil-borne disease caused by Fusarium oxysporum f.sp.fragaria (Fof),which infects the vascular bundles,blocking water and nutrient transport from roots to the aboveground.It is a severe pathogen which spreads rapidly and destroys strawberry production.Finding a way to control this disease is of great scientific value and practical importance.In this study,three fungi were isolated from the vascular tissues of sick strawberries in the field.After DNA sequencing,they were identified as Fof,Aspergillus fumigatus and Trichoderma harzianum,respectively,among which the first two are pathogens and the third is a probiotic.All fungi were controlled by thiophanate-methyl (TM),a commercial fungicide.On PDA medium,20 mg·L^(-1)5-aminolevulinic acid (ALA),a natural non-protein amino acid,promoted T.harzianum proliferation,but inhibited Fof and A.fumigatus.In confrontation test,the growth of Fof or A.fumigatus was inhibited by T.harzianum and exogenous ALA promoted T.harzianum growth but significantly inhibited the pathogen growth.When three species of fungi were separately or combinedly inoculated on healthy strawberry plants,T.harzianum promoted plant growth and development while Fof or A.fumigatus caused growth retardation,where Fof directly caused leaf yellowing and plant wilting.When the plants inoculated with different fungus were treated with ALA,the results turned out that ALA alleviated SFW symptoms by bidirectionally promoting T.harzianum proliferation and inhibiting Fof and A.fumigatus.Thus,ALA might be used in comprehensively controlling SFW in strawberry industry.展开更多
A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chem...A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).展开更多
Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA)....Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).展开更多
The effects of rare earth(RE)on the structure,acidity,and catalytic performance of HZSM-5 zeolite were investigated.A series of RE/HZSM-5 catalysts,containing 7.54% RE(RE=La,Ce,Pr,Nd,Sm,Eu or Gd),were prepared by ...The effects of rare earth(RE)on the structure,acidity,and catalytic performance of HZSM-5 zeolite were investigated.A series of RE/HZSM-5 catalysts,containing 7.54% RE(RE=La,Ce,Pr,Nd,Sm,Eu or Gd),were prepared by the impregnation of the ZSM-5 type zeolites(Si/Al=64:1)with the corresponding RE nitrate aqueous solutions.The catalysts were characterized by means of FT-IR,UV-Vis,NH3-TPD,and IR spectroscopy of adsorbed pyridine.The catalytic performances of the RE/HZSM-5 for the catalytic cracking of mixed butane to light olefins were also measured with a fixed bed microreactor.The results revealed that the addition of light rare earth metal on the HZSM-5 catalyst greatly enhanced the selectivity to olefins,especially to propylene,thus increasing the total yield of olefins in the catalytic cracking of butane.Among the RE-modified HZSM-5 samples,Ce/HZSM-5 gave the highest yield of total olefins,and Nd/HZSM-5 gave the highest yield of propene at a reaction temperature of 600℃.The presence of rare earth metal on the HZSM-5 sample,not only modified the acidic properties of HZSM-5 including the amount of acid sites and acid type,that is,the ratio of L/B(Lewis acid/Brnsted acid),but also altered the basic properties of it,which in turn promoted the catalytic performance of HZSM-5 for the catalytic cracking of butane.展开更多
Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorptio...Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorption, TGA-DTA, XPS, and ammonia adsorption FTIR. The effects of Si/Al ratio, zirconium sulfate(ZS) loading on HZSM-5 and calcination temperature on the esterification were investigated. When 20% (mass fraction) ZS is loaded on HZSM-5, the conversion of AA reaches 100%. XRD analysis indicates that ZS is highly dispersed on HZSM-5 because no crystalline structure assigned to ZS is found. Catalytic activity and hydrophobicity of ZS supported on HZSM-5 are higher compared with those of parent ZS or HZSM-5. Results show that this kind of novel catalysts is an efficient water tolerant solid acid catalyst for esterification reactions.展开更多
AIM: To explore the synergistic effect of docosahexaenoic acid(DHA)/5-fluorouracil(5-FU) on the human gastric cancer cell line AGS and examine the underlying mechanism.METHODS: AGS cells were cultured and treated with...AIM: To explore the synergistic effect of docosahexaenoic acid(DHA)/5-fluorouracil(5-FU) on the human gastric cancer cell line AGS and examine the underlying mechanism.METHODS: AGS cells were cultured and treated with a series of concentrations of DHA and 5-FU alone or in combination for 24 and 48 h. To investigate the synergistic effect of DHA and 5-FU on AGS cells, the inhibition of cell proliferation was determined by MTT assay and cell morphology. Flow cytometric analysis was also used to assess cell cycle distribution, and the expression of mitochondrial electron transfer chain complexes(METCs)?Ⅰ, Ⅱ and Ⅴ in AGS cells was further determined by Western blot analysis. RESULTS: DHA and 5-FU alone or in combination could markedly suppress the proliferation of AGS cells in a significant time and dose-dependent manner. DHA markedly strengthened the antiproliferative effect of 5-FU, decreasing the IC50 by 3.56-2.15-fold in an apparent synergy. The morphological changes of the cells were characterized by shrinkage, cell membrane blebbing and decreased adherence. Cell cycle analysis showed a shift of cells into the G0/G1 phase from the S phase following treatment with DHA or 5-FU(G0/G1 phase: 30.04% ± 1.54% vs 49.05% ± 6.41% and 63.39% ± 6.83%, respectively, P < 0.05; S phase: 56.76% ± 3.14% vs 34.75% ± 2.35% and 25.63% ± 2.21%, respectively, P < 0.05). Combination treatment of DHA and 5-FU resulted in a significantly larger shift toward the G0/G1 phase and subsequent reduction in S phase(G0/G1 phase: 69.06% ± 2.63% vs 49.05% ± 6.41% and 63.39% ± 6.83%, respectively, P < 0.05; S phase: 19.80% ± 4.30% vs 34.75% ± 2.35% and 25.63% ± 2.21%, respectively, P < 0.05). This synergy was also reflected in the significant downregulation of the expression of METCs in AGS cells.CONCLUSION: Synergistic anticancer properties of DHA and 5-FU may involve interference with energy production of AGS cells via downregulation of METCs and cell cycle arrest.展开更多
基金the funding supported by the National Natural Science Foundation of China(22378338,22078275)the Natural Science Foundation of Fujian Province of China(2021H0009)the Fundamental Research Funds for the Central Universities(20720220065)。
文摘2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production of FDCA through the oxidation of 5-hydroxymethylfurfural(HMF)and its derivatives is still rudimentary under base-free conditions.In this work,oxygen-vacancy-rich Mn Oxwas prepared and displayed a strong adsorption and anchoring ability to Ru species that mainly exposed the(210)plane of RuO_(2),bringing about highly dispersed and active interfacial Ru-O-Mn structures.Experimental results and density functional theory calculations confirm that these above features greatly facilitate the adsorption/activation of oxygen and the dehydrogenation-oxidation of HMF/5-methoxymethylfurfural(MMF),which enables an efficient FDCA production under base-free and mild conditions.Notably,a desirable FDCA yield of 86.56%was still obtained from concentrated HMF(10 wt%)under base-free conditions over oxygen-vacancy-rich Mn Oxsupported Ru Ox(1.0 MPaO_(2),120℃,6 h).This work delineates a facile catalyst preparation strategy for HMF/MMF oxidation,and might open a new avenue for the green synthesis of FDCA under base-free conditions.
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(22178197)。
文摘Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.
基金supported by the National Natural Science Foundation of China(21868012 and 22368025)Jiangxi Provincial Department of Science and Technology(20171BCB24005 and 20202BAB203011).
文摘The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalination performance.Influences of inorganic acid type(H_(2)SO_(4),H_(3)PO_(4),HNO_(3),and HCl),H_(2)SO_(4)concentration(1-6 mol·L^(-1)),test temperature(60-90℃)and inorganic acid/inorganic salt type(2 mol·L^(-1)H_(2)SO_(4)and sulfate,2 mol·L^(-1)H3PO4 and phosphate)on the pervaporation performance are investigated in this work.Either for concentrating 3%(mass)H_(2)SO_(4)solution or consecutive dehydrating 20%(mass)H_(2)SO_(4)solution,the hydrophilic ZSM-5 zeolite membrane has a good dehydration performance and stability.Even though the H_(2)SO_(4)concentration and test temperature are increased to 6 M and 90℃,only H_(2)O molecules could pass through the membrane and pH value of the permeation is kept neutral.Besides,the membrane has good dehydration and desalination performance for H_(2)SO_(4)/sulfates and H_(3)PO_(4)/phosphate mixtures,and the rejection of natrium salt,molysite,and magnesium is almost 100%.
基金supported by research funds from Zhangzhou Pien Tze Huang Pharmaceutical Co.Ltd(Grant Nos.:437b8f31,d6092dae,YHT-19064 to Chundong Yu)the National Natural Science Foundation of China(Grant Nos.:81970485,82173086 to Chundong Yu)the Natural Science Foundation of Fujian Province(Grant No.:2023J01249 to Shicong Wang).
文摘Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we reported that PZH attenuated lipopolysaccharide(LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signalling.Mechanistically,PZH stimulated signal transducer and activator of transcription 3(STAT3)phosphorylation to induce the expression of A20,which could inhibit the activation of NF-κB and MAPK signalling.Knockdown of the bile acid(BA)receptor G protein-coupled bile acid receptor 1(TGR5)in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction,as well as the LPS-induced inflammatory response,suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5.Consistently,deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20,the activation of NF-κB and MAPK signalling,and the production of proinflammatory cytokines,whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines.Overall,our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.
基金supported by the Key Project of Traditional Chinese Medicine in Anhui Province(202303a07020003)Basic Research Expenses of Beijing University of Chinese Medicine(2024-JYB-JBZD-044)Vertical Development Fund of Beijing University of Chinese Medicine(2023-ZXFZJJ-005).
文摘Objective:To determine the efficacy and safety of the Yinmei Kuijie decoction combined with 5-ami-nosalicylic acid(5-ASA)in treating mildly to moderately active ulcerative colitis(UC)under real-world conditions.Methods:This multicenter,prospective,non-randomized,observational study will be conducted in real-world settings.A total of 204 eligible patients will be consecutively enrolled in the study.Patients in the combination treatment group will receive Yinmei Kuijie decoction in combination with 5-ASA,whereas those in the control group will be treated with 5-ASA alone.The primary endpoint will be a clinical response at week 12,defined as a≥3 point and≥30%reduction from baseline in the Mayo total score with≥1 reduction in rectal bleeding or rectal bleeding score=0 or 1.Secondary efficacy endpoints at week 12 will include health-related quality of life,mucosal healing,and inflammation indicators.Conclusion:The results of this study may provide evidence of the efficacy and safety of Yinmei Kuijie decoction combined with 5-ASA in treating patients with mildly to moderately active UC under real-world principles.The results will provide a basis for further confirmatory studies on the efficacy of Yinmei Kuijie decoction.
基金funded by the Natural Science Foundation of China (Grant No.32172512)the Jiangsu Agricultural Science and Technology Innovation Fund[Grant No.CX(20)2023]+1 种基金the Jiangsu Special Fund for Frontier Foundation Research of Carbon Peaking and Carbon Neutralization (Grant No.BK20220005)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Strawberry Fusarium wilt (SFW) is a systematic soil-borne disease caused by Fusarium oxysporum f.sp.fragaria (Fof),which infects the vascular bundles,blocking water and nutrient transport from roots to the aboveground.It is a severe pathogen which spreads rapidly and destroys strawberry production.Finding a way to control this disease is of great scientific value and practical importance.In this study,three fungi were isolated from the vascular tissues of sick strawberries in the field.After DNA sequencing,they were identified as Fof,Aspergillus fumigatus and Trichoderma harzianum,respectively,among which the first two are pathogens and the third is a probiotic.All fungi were controlled by thiophanate-methyl (TM),a commercial fungicide.On PDA medium,20 mg·L^(-1)5-aminolevulinic acid (ALA),a natural non-protein amino acid,promoted T.harzianum proliferation,but inhibited Fof and A.fumigatus.In confrontation test,the growth of Fof or A.fumigatus was inhibited by T.harzianum and exogenous ALA promoted T.harzianum growth but significantly inhibited the pathogen growth.When three species of fungi were separately or combinedly inoculated on healthy strawberry plants,T.harzianum promoted plant growth and development while Fof or A.fumigatus caused growth retardation,where Fof directly caused leaf yellowing and plant wilting.When the plants inoculated with different fungus were treated with ALA,the results turned out that ALA alleviated SFW symptoms by bidirectionally promoting T.harzianum proliferation and inhibiting Fof and A.fumigatus.Thus,ALA might be used in comprehensively controlling SFW in strawberry industry.
基金supported by the Fundamental Research Funds for the Central Universities (TD2011-11,BLYJ201519)Beijing Higher Education Young Elite Teacher Project (YETP0765)+2 种基金National Natural Science Foundation of China (31170556)New Century Excellent Talents in University (NCET-13-0671)State Forestry Administration of China (201204803)~~
文摘A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).
文摘Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).
基金Project supported by the National Basic Research Program of China(2004CB2178062005CB221402)+1 种基金the National NaturalScience Foundation of China(20373043)Young Scientists Innovation Foundation of CNPC(04E7025)
文摘The effects of rare earth(RE)on the structure,acidity,and catalytic performance of HZSM-5 zeolite were investigated.A series of RE/HZSM-5 catalysts,containing 7.54% RE(RE=La,Ce,Pr,Nd,Sm,Eu or Gd),were prepared by the impregnation of the ZSM-5 type zeolites(Si/Al=64:1)with the corresponding RE nitrate aqueous solutions.The catalysts were characterized by means of FT-IR,UV-Vis,NH3-TPD,and IR spectroscopy of adsorbed pyridine.The catalytic performances of the RE/HZSM-5 for the catalytic cracking of mixed butane to light olefins were also measured with a fixed bed microreactor.The results revealed that the addition of light rare earth metal on the HZSM-5 catalyst greatly enhanced the selectivity to olefins,especially to propylene,thus increasing the total yield of olefins in the catalytic cracking of butane.Among the RE-modified HZSM-5 samples,Ce/HZSM-5 gave the highest yield of total olefins,and Nd/HZSM-5 gave the highest yield of propene at a reaction temperature of 600℃.The presence of rare earth metal on the HZSM-5 sample,not only modified the acidic properties of HZSM-5 including the amount of acid sites and acid type,that is,the ratio of L/B(Lewis acid/Brnsted acid),but also altered the basic properties of it,which in turn promoted the catalytic performance of HZSM-5 for the catalytic cracking of butane.
基金Supported by the Research Fund for the Doctoral Program of Higher Education(No20050010014)the China Petroleum &Chemical Corporation ( No X503015 )the Key Discipline Construction Foundation of Beijing Education Committee ( NoXK100100643)
文摘Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorption, TGA-DTA, XPS, and ammonia adsorption FTIR. The effects of Si/Al ratio, zirconium sulfate(ZS) loading on HZSM-5 and calcination temperature on the esterification were investigated. When 20% (mass fraction) ZS is loaded on HZSM-5, the conversion of AA reaches 100%. XRD analysis indicates that ZS is highly dispersed on HZSM-5 because no crystalline structure assigned to ZS is found. Catalytic activity and hydrophobicity of ZS supported on HZSM-5 are higher compared with those of parent ZS or HZSM-5. Results show that this kind of novel catalysts is an efficient water tolerant solid acid catalyst for esterification reactions.
文摘AIM: To explore the synergistic effect of docosahexaenoic acid(DHA)/5-fluorouracil(5-FU) on the human gastric cancer cell line AGS and examine the underlying mechanism.METHODS: AGS cells were cultured and treated with a series of concentrations of DHA and 5-FU alone or in combination for 24 and 48 h. To investigate the synergistic effect of DHA and 5-FU on AGS cells, the inhibition of cell proliferation was determined by MTT assay and cell morphology. Flow cytometric analysis was also used to assess cell cycle distribution, and the expression of mitochondrial electron transfer chain complexes(METCs)?Ⅰ, Ⅱ and Ⅴ in AGS cells was further determined by Western blot analysis. RESULTS: DHA and 5-FU alone or in combination could markedly suppress the proliferation of AGS cells in a significant time and dose-dependent manner. DHA markedly strengthened the antiproliferative effect of 5-FU, decreasing the IC50 by 3.56-2.15-fold in an apparent synergy. The morphological changes of the cells were characterized by shrinkage, cell membrane blebbing and decreased adherence. Cell cycle analysis showed a shift of cells into the G0/G1 phase from the S phase following treatment with DHA or 5-FU(G0/G1 phase: 30.04% ± 1.54% vs 49.05% ± 6.41% and 63.39% ± 6.83%, respectively, P < 0.05; S phase: 56.76% ± 3.14% vs 34.75% ± 2.35% and 25.63% ± 2.21%, respectively, P < 0.05). Combination treatment of DHA and 5-FU resulted in a significantly larger shift toward the G0/G1 phase and subsequent reduction in S phase(G0/G1 phase: 69.06% ± 2.63% vs 49.05% ± 6.41% and 63.39% ± 6.83%, respectively, P < 0.05; S phase: 19.80% ± 4.30% vs 34.75% ± 2.35% and 25.63% ± 2.21%, respectively, P < 0.05). This synergy was also reflected in the significant downregulation of the expression of METCs in AGS cells.CONCLUSION: Synergistic anticancer properties of DHA and 5-FU may involve interference with energy production of AGS cells via downregulation of METCs and cell cycle arrest.