期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
电站锅炉热效率与NOx排放响应特性建模方法 被引量:26
1
作者 赵欢 王培红 陆璐 《中国电机工程学报》 EI CSCD 北大核心 2008年第32期96-100,共5页
为了解决电站锅炉高效低污染的优化决策问题,建立了基于核主元分析支持向量回归机(kernel principle component analysis ε-support vector regression,KPCA-ε-SVR)与机理模型混合的锅炉热效率和NOx排放特性响应模型。在建模的过程中... 为了解决电站锅炉高效低污染的优化决策问题,建立了基于核主元分析支持向量回归机(kernel principle component analysis ε-support vector regression,KPCA-ε-SVR)与机理模型混合的锅炉热效率和NOx排放特性响应模型。在建模的过程中,针对模型输入变量之间存在非线性、强耦合等特点,采用核主元分析提取输入变量的主元,去除变量之间的相关性;同时采用5-fold交叉验证方法,循环搜索寻优模型的各个参数,确定输入主元个数。该模型与BP神经网络(back propagation neural-networks,BPNN)和支持向量机模型相比较具有良好的泛化能力。 展开更多
关键词 高效低污染 燃烧优化 核主元分析 支持向量回归机 5-fold交叉验证
下载PDF
基于BP神经网络猪咳嗽声识别 被引量:5
2
作者 孙浩楠 仝志民 +1 位作者 谢秋菊 李嘉熙 《中国农机化学报》 北大核心 2022年第2期148-154,共7页
咳嗽是猪患呼吸道系统疾病发病早期的主要症状。为解决猪呼吸系统疾病难以被发现和人工监测准确率低的问题,提出利用BP神经网络来检测和识别猪咳嗽声音的方案。基于四麦克风阵列进行猪声音数据的采集,以猪咳嗽声、打呼噜声、尖叫声、哼... 咳嗽是猪患呼吸道系统疾病发病早期的主要症状。为解决猪呼吸系统疾病难以被发现和人工监测准确率低的问题,提出利用BP神经网络来检测和识别猪咳嗽声音的方案。基于四麦克风阵列进行猪声音数据的采集,以猪咳嗽声、打呼噜声、尖叫声、哼哼声、咆哮声的声音为研究对象,对得到的声音数据进行滤波、端点检测等预处理,把梅尔频率倒谱系数(MFCC)作为猪声音特征参数,建立BP神经网络学习和识别的模型。经五折交叉法验证猪咳嗽声平均识别率为85.33%,猪非咳嗽声平均识别率为86.24%,识别率均在85%以上,结果表明所提出的方案是可行的。这种方法可以高效地识别猪咳嗽声,为猪呼吸道疾病发病初期的诊断提供技术支持。 展开更多
关键词 猪咳嗽识别 麦克风阵列 BP神经网络 梅尔频率倒谱系数 端点检测 五折交叉法
下载PDF
基于近红外漫反射光谱和PCA-SVM算法快速鉴别炉甘石 被引量:8
3
作者 陈龙 张晓冬 +1 位作者 孙扬波 陈科力 《中国实验方剂学杂志》 CAS CSCD 北大核心 2019年第18期116-123,共8页
目的:利用主成分分析(PCA)和支持向量机(SVM)算法,建立炉甘石生品、伪品及炮制品的近红外漫反射光谱(NIRS)鉴别模型。方法:采集炉甘石生品、伪品及炮制品的NIRS,选取特征谱段,优选光谱预处理方法及最佳主成分数,建立PCA-SVM鉴别模型。结... 目的:利用主成分分析(PCA)和支持向量机(SVM)算法,建立炉甘石生品、伪品及炮制品的近红外漫反射光谱(NIRS)鉴别模型。方法:采集炉甘石生品、伪品及炮制品的NIRS,选取特征谱段,优选光谱预处理方法及最佳主成分数,建立PCA-SVM鉴别模型。结果:在7 500~4 000 cm-1谱段,以一阶导数法(FD)为最佳光谱预处理方法,PCA提取的光谱前5个主成分为最佳主成分,并经网格搜索算法确定惩罚因子c=0. 25,核函数参数g=8为最佳SVM内部参数,建立炉甘石PCA-SVM鉴别模型。该模型五折交叉验证准确率100%,且模型对训练集和测试集样品预测正确率亦均达100%。结论:基于PCASVM算法所建立的炉甘石NIRS鉴别模型预测准确率高,结合固体粉末漫反射技术无损、快速的优点,该模型可用于炉甘石生品、伪品及炮制品的无损、快速鉴别。 展开更多
关键词 炉甘石 近红外漫反射光谱 主成分分析 支持向量机 一阶导数法 网格搜索算法 五折交叉验证
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部