In the present study, we hypothesized that 5-hydroxymethyl-2-furfural could attenuate ischemic brain damage by reducing oxidative injury. Thus, mice were subjected to bilateral common carotid artery occlusion to estab...In the present study, we hypothesized that 5-hydroxymethyl-2-furfural could attenuate ischemic brain damage by reducing oxidative injury. Thus, mice were subjected to bilateral common carotid artery occlusion to establish a model of permanent forebrain ischemia. The mice were intraperitoneally injected with 5-hydroxymethyl-2-furfura130 minutes before ischemia or 5 minutes after ischemia. The survival time of mice injected with 5-hydroxymethyl-2-furfural was longer compared with untreated mice. The mice subjected to ischemia for 30 minutes and reperfusion for 5 minutes were intraperitoneally injected with 5-hydroxymethyl-2-furfural 5 minutes prior to reperfusion, which increased superoxide dismutase content and reduced malondialdehyde content, similar to the effects of Edaravone, a hydroxyl radical scavenger used for the treatment of stroke. These findings indicate that intraperitoneal injection of 5-hydroxymethyl-2-furfural can prolong the survival of mice with permanent forebrain ischemia. This outcome may be mediated by its antioxidative effects.展开更多
Six hydrophobic peptidyl and four amino acid (L-Val, L-Leu, L-Phe, L-Gly) derivatives of 5-fluorouracil(5-FU) were synthesized. The structure of these compounds were characterized by ~1H-NMR, IR, UV spectra and elemen...Six hydrophobic peptidyl and four amino acid (L-Val, L-Leu, L-Phe, L-Gly) derivatives of 5-fluorouracil(5-FU) were synthesized. The structure of these compounds were characterized by ~1H-NMR, IR, UV spectra and elemental analysis. The antitumor activity was test- ed against EAC cells in vitro.展开更多
A base-free catalytic system for the aerobic oxidation of 5-hydroxymethyl-2-furfural was exploited by using Pt nanoparticles immobilized onto a thermoresponsive poly(acrylamide-co-acrylonitrile)-b-poly(N-vinylimidazol...A base-free catalytic system for the aerobic oxidation of 5-hydroxymethyl-2-furfural was exploited by using Pt nanoparticles immobilized onto a thermoresponsive poly(acrylamide-co-acrylonitrile)-b-poly(N-vinylimidazole)block copolymer,with an upper critical solution temperature of about 45°C.The Pt nanocatalysts were well-dispersed and highly active for the base-free oxidation of 5-hydroxymethyl-2-furfural by molecular oxygen in water,affording high yields of 2,5-furandicarboxylic acid(up to>99.9%).The imidazole groups in the block copolymer were conducive to the improvement of catalytic performance.Moreover,the catalysts could be easily separated and recovered based on their thermosensitivity by cooling the reaction system below the upper critical solution temperature.Good stability and reusability were observed over these copolymer-immobilized catalysts with no obvious decrease in catalytic activity in the five consecutive cycles.展开更多
基金supported by the National Basic Research Program of China (973 Program),No.2003CB517104the National Natural Science Foundation of China,No.30973513+3 种基金Beijing Municipal Science and Technology Program,No.D0206001043191the Natural Science Foundation of Beijing,No.7112061Beijing Key Foundation of Traditional Chinese Medicine,No.KJTS2011-04Beijing Health and Technical Personal of High-Level Plan,No.2009-3-66
文摘In the present study, we hypothesized that 5-hydroxymethyl-2-furfural could attenuate ischemic brain damage by reducing oxidative injury. Thus, mice were subjected to bilateral common carotid artery occlusion to establish a model of permanent forebrain ischemia. The mice were intraperitoneally injected with 5-hydroxymethyl-2-furfura130 minutes before ischemia or 5 minutes after ischemia. The survival time of mice injected with 5-hydroxymethyl-2-furfural was longer compared with untreated mice. The mice subjected to ischemia for 30 minutes and reperfusion for 5 minutes were intraperitoneally injected with 5-hydroxymethyl-2-furfural 5 minutes prior to reperfusion, which increased superoxide dismutase content and reduced malondialdehyde content, similar to the effects of Edaravone, a hydroxyl radical scavenger used for the treatment of stroke. These findings indicate that intraperitoneal injection of 5-hydroxymethyl-2-furfural can prolong the survival of mice with permanent forebrain ischemia. This outcome may be mediated by its antioxidative effects.
文摘Six hydrophobic peptidyl and four amino acid (L-Val, L-Leu, L-Phe, L-Gly) derivatives of 5-fluorouracil(5-FU) were synthesized. The structure of these compounds were characterized by ~1H-NMR, IR, UV spectra and elemental analysis. The antitumor activity was test- ed against EAC cells in vitro.
基金supported by the National Natural Science Foundation of China(Grant No.21203102)the Nankai University&Cangzhou Bohai New Area Institute of Green Chemical Engineering Fund(Grant No.NCC2020PY02)+2 种基金the Tianjin Municipal Natural Science Foundation(Grant No.17JCYBJC22600)the Innovative Team Project of Ministry of Education of China(IRT13R30)the Fundamental Research Funds for the Central Universities.
文摘A base-free catalytic system for the aerobic oxidation of 5-hydroxymethyl-2-furfural was exploited by using Pt nanoparticles immobilized onto a thermoresponsive poly(acrylamide-co-acrylonitrile)-b-poly(N-vinylimidazole)block copolymer,with an upper critical solution temperature of about 45°C.The Pt nanocatalysts were well-dispersed and highly active for the base-free oxidation of 5-hydroxymethyl-2-furfural by molecular oxygen in water,affording high yields of 2,5-furandicarboxylic acid(up to>99.9%).The imidazole groups in the block copolymer were conducive to the improvement of catalytic performance.Moreover,the catalysts could be easily separated and recovered based on their thermosensitivity by cooling the reaction system below the upper critical solution temperature.Good stability and reusability were observed over these copolymer-immobilized catalysts with no obvious decrease in catalytic activity in the five consecutive cycles.