Background:Drug resistance is the main factor contributing to cancer recurrence and poor prognosis.Exploration of drug resistance-related mechanisms and effective therapeutic targets are the aim of molecular targeted ...Background:Drug resistance is the main factor contributing to cancer recurrence and poor prognosis.Exploration of drug resistance-related mechanisms and effective therapeutic targets are the aim of molecular targeted therapy.In our study,the role of long non-coding RNA(lncRNA)AFAP1-AS1 in gemcitabine resistance and related mechanisms were explored in cervical cancer cells.Methods:Gemcitabine-resistant cervical cancer cell lines HT-3-Gem and SW756-Gem were constructed using the gemcitabine concentration gradient method.The overall survival rates and recurrence-free survival rates were evaluated by Kaplan-Meier analysis.The interaction was verified through a Dual-luciferase reporter gene assay and a Biotinylated RNA pull-down assay.Cell proliferation ability was assessed through methyl-thiazolyl-tetrazolium(MTT),soft agar,and colony formation experiments.Cell cycle and apoptosis were detected byflow cytometry.Results:Up-regulation of AFAP1-AS1 in cervical cancer predicted a poor prognosis.Besides,patients in the gemcitabine-resistance group had higher levels of AFAP1-AS1 than the gemcitabine-sensitive group.AFAP1-AS1 promoted tumor growth and induced gemcitabine tolerance of cervical cancer cells.In addition,AFAP1-AS1 mediated epidermal growth factor receptor(EGFR)expression by serving as a molecular sponge for microRNA-7a-5p(miR-7-5p).This present study also proved that the knockdown of EGFR or overexpression of miR-7a-5p abolished the accelerative role of AFAP1-AS1 overexpression in cancer progression and gemcitabine tolerance.Conclusions:In general,the AFAP1-AS1/miR-7-5p/EGFR axis was tightly related to the progression and gemcitabine tolerance of cervical cancer,providing potential targets for the management of cervical cancer.展开更多
目的ATP结合盒B亚家族成员1(ATP binding cassette subfamily B member 1,ABCB1)的异常表达在多种癌症的发生发展中发挥关键作用。然而,G蛋白偶联受体C家族5组A型(G protein coupled receptor family C group5 type A,GPRC5A)调控的ABCB...目的ATP结合盒B亚家族成员1(ATP binding cassette subfamily B member 1,ABCB1)的异常表达在多种癌症的发生发展中发挥关键作用。然而,G蛋白偶联受体C家族5组A型(G protein coupled receptor family C group5 type A,GPRC5A)调控的ABCB1表达对肺腺癌增殖的影响仍不清楚。本研究探讨了GPRC5A调控的ABCB1表达对肺腺癌增殖的影响。方法我们采用RT-PCR、Western-blot或免疫组化实验,分析ABCB1在肺腺癌细胞系、人肺腺癌组织以及GPRC5A基因敲除小鼠和野生型小鼠的气管上皮细胞和肺组织中的表达。采用细胞计数试剂盒-8(CCK-8)分析GPRC5A基因敲除小鼠气管上皮细胞对化疗药物的敏感性。采用皮下肿瘤形成实验探讨下调ABCB1表达是否可抑制体内肺腺癌增殖。采用免疫荧光和免疫沉淀实验研究GPRC5A和ABCB1之间潜在的调控关系。结果ABCB1在肺腺癌细胞系和人类肺腺癌组织中表达上调。GPRC5A基因敲除小鼠的气管上皮细胞及肺组织的ABCB1表达高于野生型小鼠。与GPRC5A野生型小鼠的气管上皮细胞相比,GPRC5A基因敲除小鼠的气管上皮细胞对塔立奇达和多柔比星更敏感。注射移植细胞28天后,接受ABCB1基因敲除细胞移植的GPRC5A-/-C57BL/6小鼠的肺肿瘤的体积和重量均明显低于野生型细胞移植小鼠(P=0.0043,P=0.0060)。此外,免疫荧光和免疫沉淀实验表明,GPRC5A通过直接结合方式调控ABCB1的表达。结论GPRC5A通过抑制ABCB1表达降低肺腺癌增殖。GPRC5A调节ABCB1表达的途径有待研究。展开更多
Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4)...Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.展开更多
It has been reported that augmentative effect of tetrandrine on pentobarbital hypnosis in mice may be related to serotonergic system. The present study was undertaken to investigate the interaction of tetrandrine and ...It has been reported that augmentative effect of tetrandrine on pentobarbital hypnosis in mice may be related to serotonergic system. The present study was undertaken to investigate the interaction of tetrandrine and different 5-HT receptors on pentobarbital-induced sleep by using the loss-of-righting reflex method. The results showed that augmentative effect of tetrandrine on pentobarbital hypnosis in mice were potentiated by the p-MPPI (5-HT1A receptor antagonist) (1 mg/kg, i.p.) and ketanserin (5-HT2A/2C receptor antagonist) (1.5 mg/kg, i.p.), respectively. Pretreatment with either 8-OH-DPAT (5-HT1A receptor agonist) (0.1 mg/kg, s.c.) or DOI (5-HT2A/2C receptor agonist) (0.2 mg/kg, i.p.) significantly decreased pentobarbital-induced sleep time, and tetrandrine (60 mg/kg, i.g.) significantly reversed this effect. These results suggest that both the 5-HTLA and 5-HT2A/2C subfamily may be involved in the potentiating mechanism of tetrandrine's effects on pantobarbital hypnosis.展开更多
Extracellular amyloid beta(Aβ) plaques are main pathological feature of Alzheimer’s disease.However,the specific type of neuro ns that produce Aβ peptides in the initial stage of Alzheimer’s disease are unknown.In...Extracellular amyloid beta(Aβ) plaques are main pathological feature of Alzheimer’s disease.However,the specific type of neuro ns that produce Aβ peptides in the initial stage of Alzheimer’s disease are unknown.In this study,we found that 5-hydroxytryptamin receptor 3A subunit(HTR3A) was highly expressed in the brain tissue of transgenic amyloid precursor protein and presenilin-1 mice(an Alzheimer’s disease model) and patients with Alzheimer’s disease.To investigate whether HTR3A-positive interneurons are associated with the production of Aβ plaques,we performed double immunostaining and found that HTR3A-positive interneurons were clustered around Aβ plaques in the mouse model.Some amyloid precursor protein-positive or β-site amyloid precursor protein cleaving enzyme-1-positive neurites near Aβ plaques were co-localized with HTR3A interneurons.These results suggest that HTR3A-positive interneurons may partially contribute to the generation of Aβ peptides.We treated 5.0-5.5-month-old model mice with tro pisetron,a HTR3 antagonist,for 8 consecutive weeks.We found that the cognitive deficit of mice was partially reversed,Aβ plaques and neuroinflammation we re remarkably reduced,the expression of HTR3 was remarkably decreased and the calcineurin/nuclear factor of activated T-cell 4 signaling pathway was inhibited in treated model mice.These findings suggest that HTR3A interneurons partly contribute to generation of Aβ peptide at the initial stage of Alzheimer’s disease and inhibiting HTR3 partly reve rses the pathological changes of Alzheimer’s disease.展开更多
AIM: To delineate the mechanisms of renal vasoconstriction in hepatorenal syndrome (HRS), we investigated the expression of type I inositol 1, 4, 5-triphosphate receptors (IP3R I) of kidney in mice with fulminant...AIM: To delineate the mechanisms of renal vasoconstriction in hepatorenal syndrome (HRS), we investigated the expression of type I inositol 1, 4, 5-triphosphate receptors (IP3R I) of kidney in mice with fulminant hepatic failure (FHF). METHODS: FHF was induced by lipopolysaccharide (LPS) in D-galactosamine (GAIN) sensitized BALB/c mice. There were 20 mice in normal saline (NS)-treated group, 20 mice in LPS-treated group, 20 mice in GaIN- treated group, and 60 mice in GalN/LPS-treated group (FHF group). Liver and kidney tissues were obtained at 2, 6, and 9 h after administration. The liver and kidney specimens were stained with hematoxylin-eosin for studying morphological changes under light microscope. The expression of IP3R I in kidney tissue was tested by immunohistochemistry, Western blot and reverse transcription (RT)-PCR. RESULTS: Kidney tissues were morphologically normal at all time points in all groups. IP3R I proteins were found localized in the plasma region of glomerular mesangial cells (GMC) and vascular smooth muscle cells (VSMC) in kidney by immunohistochemical staining. In kidney of mice with FHF at 6 h and 9 h IP3R I staining was upregulated. Results from Western blot demonstrated consistent and significant increment of IP3R I expression in mice with FHF at 6 h and 9 h (t = 3.16, P 〈 0.05; t = 5.43, P 〈 0.01). Furthermore, we evaluated IP3R I mRNA expression by RT-PCR and observed marked upregulation of IP3R I mRNA in FHF samples at 2 h, 6 h and 9 h compared to controls (t = 2.97, P 〈 0.05; t = 4.42, P 〈 0.01; t = 3.81, P 〈 0.01). CONCLUSION: The expression of IP3R I protein increased in GMC and renal VSMC of mice with FHF, possibly caused by up-regulation of IP3R I mRNA.展开更多
Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p...Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.展开更多
Researchers have been searching for molecular features that could make avian H5N1 influenza transmissible among people since the first report of human infections with this virus in 1997. A recent study surprisingly de...Researchers have been searching for molecular features that could make avian H5N1 influenza transmissible among people since the first report of human infections with this virus in 1997. A recent study surprisingly demonstrated that only five mutations, fewer than previously estimated, are needed to make avian H5N1 influenza transmissible between ferrets through the air, raising fears that a human pandemic is possible if this virus escapes from the lab. Of the five mutations found, four of them are located in the HA gene that is responsible for the viral entry into the host cells. A crucial step for avian influenza to go across the species boundary to infect humans is the switch of its receptor binding specificity from avian to human types. The first task of this study was to quantify the individual as well as the collective effect of the known HA mutations from the previous research on receptor binding selection. Our second task was to identify new combinations of HA mutations that could change the receptor binding preference of H5N1 from avian to human types. Our findings thus deepened our understanding of the previous research and also extended its results by discovering new combinations of mutations that could enhance the binding of avian H5N1 to human type receptors while reduce that to avian types.展开更多
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur...Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.展开更多
An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease prog...An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.展开更多
Rivastigmine, a dual acetylcholinesterase and butyrylcholinesterase inhibitor, is used for symptomatic treatment of patients with mild to moderately severe dementia in Alzheimer’s disease (AD) patients. In the presen...Rivastigmine, a dual acetylcholinesterase and butyrylcholinesterase inhibitor, is used for symptomatic treatment of patients with mild to moderately severe dementia in Alzheimer’s disease (AD) patients. In the present study, we found that 5-HT1A receptor (5-HT1AR) is downregulated, whereas 5-HT2A receptor (5-HT2AR) is upregulated in the hippocampal dentate gyrus (DG) and CA1 region by olfactory bulbectomy (OBX) in mice. Furthermore, chronic treatment with rivastigmine (1.0 mg/kg) for 2 weeks starting 2 weeks after OBX operation restored the decreased 5-HT1AR and the increased 5-HT2AR levels. To determine whether cholinergic receptor stimulation by rivastigmine is involved in the rivastigmine-induced regulation of 5-HTR levels, we treated the mice with mecamylamine (2.5 mg/kg), or atropine (5.0 mg/kg) with rivastigmine (1.0 mg/kg) once a day for 2 weeks. Notably, the rivastigmine-induced 5-HT1AR upregulation was eliminated by mecamylamine but not by atropine treatments. On the other hand, the restored 5-HT2AR level by rivastigmine was not affected by either mecamylamine or atropine. Treatment with 8-OH-DPAT, a selective 5-HT1AR agonist improved the decreased 5-HT1AR and the increased 5-HT2AR levels in OBX mice. On the other hand, treatment with TCB-2, a potent 5-HT2AR agonist had no effects on the 5-HT1AR and 5-HT2AR dysregulation in OBX mice. Taken together, nicotinic acetylcholine receptor (nAChR) stimulation mediates rivastigmine-induced upregulation of 5-HT1AR. Therefore, we speculate that the increased ACh levels by rivastigmine can stimulate nAChR located on serotonergic nerve terminals and stimulate 5-HT1AR by the enhanced 5-HT release in the hippocampus. The 5-HT1AR stimulation likely mediates the improvement of 5-HT1AR levels as auto-receptor in OBX hippocampus.展开更多
BACKGROUND Cancer stem cells(CSCs)are a subpopulation of cancer cells with the potential of self-renewal and differentiation.CSCs play critical roles in tumorigenesis,recurrence,metastasis,radiation tolerance and chem...BACKGROUND Cancer stem cells(CSCs)are a subpopulation of cancer cells with the potential of self-renewal and differentiation.CSCs play critical roles in tumorigenesis,recurrence,metastasis,radiation tolerance and chemoresistance.AIM To assess the expression patterns and clinical potential of doublecortin-like kinase 1(DCLK1)and leucine-rich repeat-containing G-protein-coupled receptor 5(Lgr5),as prognostic CSC markers of colorectal cancer(CRC).METHODS The expression of DCLK1 and Lgr5 in CRC tissue sections from 92 patients was determined by immunohistochemistry.Each case was evaluated using a combined scoring method based on signal intensity staining(scored 0-3)and the proportion of positively stained cancer cells(scored 0-3).The final staining score was calculated as the intensity score multiplied by the proportion score.Low expression of DCLK1 and Lgr5 was defined as a score of 0-3;high expression of DCLK1 and Lgr5 was defined as a score of≥4.Specimens were categorized as either high or low expression,and the correlation between the expression of DCLK1 or Lgr5 and clinicopathological factors was investigated.RESULTS DCLK1 and Lgr5 expression levels were significantly positively correlated.CRC patients with high DCLK1,Lgr5 and DCLK1/Lgr5 expressions had poorer progression-free survival and overall survival.Moreover,high expression of DCLK1 was an independent prognostic factor for recurrence and overall survival in patients with CRC by multivariate analysis(P=0.026 and P=0.049,respectively).CONCLUSION DCLK1 may be a potential CSC marker for the recurrence and survival of CRC patients.展开更多
The rapid spread of the highly pathogenic A/H5N1 avian influenza virus among domestic birds and its transmission to humans has induced world-wide fears of a new influenza pandemic. A/H5N1 has infected over 300 people ...The rapid spread of the highly pathogenic A/H5N1 avian influenza virus among domestic birds and its transmission to humans has induced world-wide fears of a new influenza pandemic. A/H5N1 has infected over 300 people since 1997, and has shown a mortality rate of over 50%. The high mortality in human cases is thought to be enhanced by the excessive secretion of various endogenous factors, including cytokines and interleukins, stimulated by viral infections. Chickens infected with A/H5N1 viruses experience sudden death without showing severe clinical symptoms or inflammation. However, severe hemorrhage and congestion are seen in various tissues in sporadic chicken cases of A/H5N1-infections, especially in the pulmonary tissues, thus indicating that there is ischemia due to vascular abnormalities. Our previous studies have focused on the expression pattern of endothelin-1, which modulates the vascular tone via endothelin receptors. An Indonesian sporadic strain of A/H5N1 virus was intranasally administered to 10-day-old chicks, and the expression of endothelin was examined in the infected birds. All birds died within five days of inoculation, and had moderate inflammation accompanied by severe hemorrhage and congestion in the lungs. Immunohistochemical studies showed enhanced expression of endothelin-1 in the infected lungs. In addition, the real-time PCR analyses revealed that endothelin-1 and endothelin receptor A mRNA were significantly elevated in the birds with A/H5N1 infections. Subsequently, H5N1-infected birds were inoculated with bosentan hydrate, a competitive antagonist of endothelin receptors. Interestingly, the mortality rate of the infected birds was dramatically decreased in a dose-dependent manner by the administration of bosentan hydrate. The pathological lesions, including congestion and hemorrhage in the pulmonary tissues, were clearly inhibited. These findings are promising, and suggest that endothelin receptor antagonists are a potential treatment for the highly pathogenic avian flu.展开更多
The present study examines the effects of serotonin (5-HT) 1A receptor ligands on humoral im-mune response in two rat lines selected for over 75 generations for the enhancement or elimination of aggression. Activation...The present study examines the effects of serotonin (5-HT) 1A receptor ligands on humoral im-mune response in two rat lines selected for over 75 generations for the enhancement or elimination of aggression. Activation of presynaptic 5-HT1A receptors with a low dose of the selective 5-HT1A receptor agonist 8-OH-DPAT (0.1 mg/kg) or the blockade of postsynaptic 5-HT1A receptors with the antagonist WAY-100635 (1.0 mg/kg) did not affect the numbers of IgM-antibody forming cells (IgM-AFC) in the spleen of highly aggressive rats, which were characterized by higher immune responsiveness compared to nonaggressive line. On the other hand, the same doses of 8-OH-DPAT and WAY-100635, as well as a higher dose of 8-OH-DPAT (1.0 mg/kg), which is known to activate postsynaptic 5-HT1A receptors, produce immunostimulation in nonaggressive rats. However, only the highest dose of 8-OH-DPAT (5.0 mg/kg) was able to cause immunosuppression in nonaggressive rats that was mainly dependent on stimulation of postsynaptic 5-HT1A receptors. In contrast to nonaggressive rats, the dose of 1.0 mg/kg 8-OH-DPAT was sufficient to produce a decrease in the numbers of IgM-AFC in highly aggressive rats. Thus, pharmacological activation of pre- and postsynaptic 5-HT1A receptors, as well as the blockade of postsynaptic 5-HT1A receptors, produced different effects on the immune response in two lines of rats selected for high level of aggression or its absence. These data may have implications for more efficient treatments of a number of mental disorders associated with abnormal aggression.展开更多
文摘Background:Drug resistance is the main factor contributing to cancer recurrence and poor prognosis.Exploration of drug resistance-related mechanisms and effective therapeutic targets are the aim of molecular targeted therapy.In our study,the role of long non-coding RNA(lncRNA)AFAP1-AS1 in gemcitabine resistance and related mechanisms were explored in cervical cancer cells.Methods:Gemcitabine-resistant cervical cancer cell lines HT-3-Gem and SW756-Gem were constructed using the gemcitabine concentration gradient method.The overall survival rates and recurrence-free survival rates were evaluated by Kaplan-Meier analysis.The interaction was verified through a Dual-luciferase reporter gene assay and a Biotinylated RNA pull-down assay.Cell proliferation ability was assessed through methyl-thiazolyl-tetrazolium(MTT),soft agar,and colony formation experiments.Cell cycle and apoptosis were detected byflow cytometry.Results:Up-regulation of AFAP1-AS1 in cervical cancer predicted a poor prognosis.Besides,patients in the gemcitabine-resistance group had higher levels of AFAP1-AS1 than the gemcitabine-sensitive group.AFAP1-AS1 promoted tumor growth and induced gemcitabine tolerance of cervical cancer cells.In addition,AFAP1-AS1 mediated epidermal growth factor receptor(EGFR)expression by serving as a molecular sponge for microRNA-7a-5p(miR-7-5p).This present study also proved that the knockdown of EGFR or overexpression of miR-7a-5p abolished the accelerative role of AFAP1-AS1 overexpression in cancer progression and gemcitabine tolerance.Conclusions:In general,the AFAP1-AS1/miR-7-5p/EGFR axis was tightly related to the progression and gemcitabine tolerance of cervical cancer,providing potential targets for the management of cervical cancer.
文摘目的ATP结合盒B亚家族成员1(ATP binding cassette subfamily B member 1,ABCB1)的异常表达在多种癌症的发生发展中发挥关键作用。然而,G蛋白偶联受体C家族5组A型(G protein coupled receptor family C group5 type A,GPRC5A)调控的ABCB1表达对肺腺癌增殖的影响仍不清楚。本研究探讨了GPRC5A调控的ABCB1表达对肺腺癌增殖的影响。方法我们采用RT-PCR、Western-blot或免疫组化实验,分析ABCB1在肺腺癌细胞系、人肺腺癌组织以及GPRC5A基因敲除小鼠和野生型小鼠的气管上皮细胞和肺组织中的表达。采用细胞计数试剂盒-8(CCK-8)分析GPRC5A基因敲除小鼠气管上皮细胞对化疗药物的敏感性。采用皮下肿瘤形成实验探讨下调ABCB1表达是否可抑制体内肺腺癌增殖。采用免疫荧光和免疫沉淀实验研究GPRC5A和ABCB1之间潜在的调控关系。结果ABCB1在肺腺癌细胞系和人类肺腺癌组织中表达上调。GPRC5A基因敲除小鼠的气管上皮细胞及肺组织的ABCB1表达高于野生型小鼠。与GPRC5A野生型小鼠的气管上皮细胞相比,GPRC5A基因敲除小鼠的气管上皮细胞对塔立奇达和多柔比星更敏感。注射移植细胞28天后,接受ABCB1基因敲除细胞移植的GPRC5A-/-C57BL/6小鼠的肺肿瘤的体积和重量均明显低于野生型细胞移植小鼠(P=0.0043,P=0.0060)。此外,免疫荧光和免疫沉淀实验表明,GPRC5A通过直接结合方式调控ABCB1的表达。结论GPRC5A通过抑制ABCB1表达降低肺腺癌增殖。GPRC5A调节ABCB1表达的途径有待研究。
基金This work was supported by grants from the National Natural Science Foundation of China(No.30370142)the.National Special Key Project on Functional Genomics and Biochip of China(No.2002AA2Z1002)the Project sponsored by the Scientific Research Foundation for the Returned Oversea Chinese Scholars,State Education Ministry.
文摘Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.
基金National Natural Science Foundation of China(Grant No.30772556 and 30640070)Research Fund of Janssen Research Council and the‘985'Project in Peking University.
文摘It has been reported that augmentative effect of tetrandrine on pentobarbital hypnosis in mice may be related to serotonergic system. The present study was undertaken to investigate the interaction of tetrandrine and different 5-HT receptors on pentobarbital-induced sleep by using the loss-of-righting reflex method. The results showed that augmentative effect of tetrandrine on pentobarbital hypnosis in mice were potentiated by the p-MPPI (5-HT1A receptor antagonist) (1 mg/kg, i.p.) and ketanserin (5-HT2A/2C receptor antagonist) (1.5 mg/kg, i.p.), respectively. Pretreatment with either 8-OH-DPAT (5-HT1A receptor agonist) (0.1 mg/kg, s.c.) or DOI (5-HT2A/2C receptor agonist) (0.2 mg/kg, i.p.) significantly decreased pentobarbital-induced sleep time, and tetrandrine (60 mg/kg, i.g.) significantly reversed this effect. These results suggest that both the 5-HTLA and 5-HT2A/2C subfamily may be involved in the potentiating mechanism of tetrandrine's effects on pantobarbital hypnosis.
基金supported by the Notional Natural Science Foundation of China,Nos.81371213 and 8107098 7the Natural Science Foundation of Shanghai,No.21ZR1468400 (all to QLY)。
文摘Extracellular amyloid beta(Aβ) plaques are main pathological feature of Alzheimer’s disease.However,the specific type of neuro ns that produce Aβ peptides in the initial stage of Alzheimer’s disease are unknown.In this study,we found that 5-hydroxytryptamin receptor 3A subunit(HTR3A) was highly expressed in the brain tissue of transgenic amyloid precursor protein and presenilin-1 mice(an Alzheimer’s disease model) and patients with Alzheimer’s disease.To investigate whether HTR3A-positive interneurons are associated with the production of Aβ plaques,we performed double immunostaining and found that HTR3A-positive interneurons were clustered around Aβ plaques in the mouse model.Some amyloid precursor protein-positive or β-site amyloid precursor protein cleaving enzyme-1-positive neurites near Aβ plaques were co-localized with HTR3A interneurons.These results suggest that HTR3A-positive interneurons may partially contribute to the generation of Aβ peptides.We treated 5.0-5.5-month-old model mice with tro pisetron,a HTR3 antagonist,for 8 consecutive weeks.We found that the cognitive deficit of mice was partially reversed,Aβ plaques and neuroinflammation we re remarkably reduced,the expression of HTR3 was remarkably decreased and the calcineurin/nuclear factor of activated T-cell 4 signaling pathway was inhibited in treated model mice.These findings suggest that HTR3A interneurons partly contribute to generation of Aβ peptide at the initial stage of Alzheimer’s disease and inhibiting HTR3 partly reve rses the pathological changes of Alzheimer’s disease.
基金Supported by National Natural Science Foundation of China, No. 30270607
文摘AIM: To delineate the mechanisms of renal vasoconstriction in hepatorenal syndrome (HRS), we investigated the expression of type I inositol 1, 4, 5-triphosphate receptors (IP3R I) of kidney in mice with fulminant hepatic failure (FHF). METHODS: FHF was induced by lipopolysaccharide (LPS) in D-galactosamine (GAIN) sensitized BALB/c mice. There were 20 mice in normal saline (NS)-treated group, 20 mice in LPS-treated group, 20 mice in GaIN- treated group, and 60 mice in GalN/LPS-treated group (FHF group). Liver and kidney tissues were obtained at 2, 6, and 9 h after administration. The liver and kidney specimens were stained with hematoxylin-eosin for studying morphological changes under light microscope. The expression of IP3R I in kidney tissue was tested by immunohistochemistry, Western blot and reverse transcription (RT)-PCR. RESULTS: Kidney tissues were morphologically normal at all time points in all groups. IP3R I proteins were found localized in the plasma region of glomerular mesangial cells (GMC) and vascular smooth muscle cells (VSMC) in kidney by immunohistochemical staining. In kidney of mice with FHF at 6 h and 9 h IP3R I staining was upregulated. Results from Western blot demonstrated consistent and significant increment of IP3R I expression in mice with FHF at 6 h and 9 h (t = 3.16, P 〈 0.05; t = 5.43, P 〈 0.01). Furthermore, we evaluated IP3R I mRNA expression by RT-PCR and observed marked upregulation of IP3R I mRNA in FHF samples at 2 h, 6 h and 9 h compared to controls (t = 2.97, P 〈 0.05; t = 4.42, P 〈 0.01; t = 3.81, P 〈 0.01). CONCLUSION: The expression of IP3R I protein increased in GMC and renal VSMC of mice with FHF, possibly caused by up-regulation of IP3R I mRNA.
基金supported by the National Natural Science Foundation of ChinaNos.81971047 (to WTL) and 82073910 (to XFW)+2 种基金the Natural Science Foundation of Jiangsu Province,No.BK20191253 (to XFW)Key R&D Program (Social Development) Project of Jiangsu Province,No.BE2019 732 (to WTL)Jiangsu Province Hospital (the First Affiliated Hospital of Nanjing Medical University) Clinical Capacity Enhancement Project,No.JSPH-511B2018-8 (to YBP)。
文摘Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.
文摘Researchers have been searching for molecular features that could make avian H5N1 influenza transmissible among people since the first report of human infections with this virus in 1997. A recent study surprisingly demonstrated that only five mutations, fewer than previously estimated, are needed to make avian H5N1 influenza transmissible between ferrets through the air, raising fears that a human pandemic is possible if this virus escapes from the lab. Of the five mutations found, four of them are located in the HA gene that is responsible for the viral entry into the host cells. A crucial step for avian influenza to go across the species boundary to infect humans is the switch of its receptor binding specificity from avian to human types. The first task of this study was to quantify the individual as well as the collective effect of the known HA mutations from the previous research on receptor binding selection. Our second task was to identify new combinations of HA mutations that could change the receptor binding preference of H5N1 from avian to human types. Our findings thus deepened our understanding of the previous research and also extended its results by discovering new combinations of mutations that could enhance the binding of avian H5N1 to human type receptors while reduce that to avian types.
基金supported by the National Natural Science Foundation of China(Youth Science Fund Project),No.81901292(to GC)the National Key Research and Development Program of China,No.2021YFC2502100(to GC)the National Natural Science Foundation of China,No.82071183(to ZZ).
文摘Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.
基金supported by a grant from Ministry of Science,Technological Development and Innovation,Serbia,No.451-03-68/2022-14/200178(to NN)University of Defence,No.MFVMA/02/22-24(to MN)。
文摘An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.
文摘Rivastigmine, a dual acetylcholinesterase and butyrylcholinesterase inhibitor, is used for symptomatic treatment of patients with mild to moderately severe dementia in Alzheimer’s disease (AD) patients. In the present study, we found that 5-HT1A receptor (5-HT1AR) is downregulated, whereas 5-HT2A receptor (5-HT2AR) is upregulated in the hippocampal dentate gyrus (DG) and CA1 region by olfactory bulbectomy (OBX) in mice. Furthermore, chronic treatment with rivastigmine (1.0 mg/kg) for 2 weeks starting 2 weeks after OBX operation restored the decreased 5-HT1AR and the increased 5-HT2AR levels. To determine whether cholinergic receptor stimulation by rivastigmine is involved in the rivastigmine-induced regulation of 5-HTR levels, we treated the mice with mecamylamine (2.5 mg/kg), or atropine (5.0 mg/kg) with rivastigmine (1.0 mg/kg) once a day for 2 weeks. Notably, the rivastigmine-induced 5-HT1AR upregulation was eliminated by mecamylamine but not by atropine treatments. On the other hand, the restored 5-HT2AR level by rivastigmine was not affected by either mecamylamine or atropine. Treatment with 8-OH-DPAT, a selective 5-HT1AR agonist improved the decreased 5-HT1AR and the increased 5-HT2AR levels in OBX mice. On the other hand, treatment with TCB-2, a potent 5-HT2AR agonist had no effects on the 5-HT1AR and 5-HT2AR dysregulation in OBX mice. Taken together, nicotinic acetylcholine receptor (nAChR) stimulation mediates rivastigmine-induced upregulation of 5-HT1AR. Therefore, we speculate that the increased ACh levels by rivastigmine can stimulate nAChR located on serotonergic nerve terminals and stimulate 5-HT1AR by the enhanced 5-HT release in the hippocampus. The 5-HT1AR stimulation likely mediates the improvement of 5-HT1AR levels as auto-receptor in OBX hippocampus.
基金Supported by Sanming Project of Shenzhen,No.SZSM201612041Shenzhen Science and Technology Innovation Commission Project,No.GJHZ20180420180754917 and No.ZDSYS20190902092855097Postdoctoral Science Foundation of China,No.2018M633095.
文摘BACKGROUND Cancer stem cells(CSCs)are a subpopulation of cancer cells with the potential of self-renewal and differentiation.CSCs play critical roles in tumorigenesis,recurrence,metastasis,radiation tolerance and chemoresistance.AIM To assess the expression patterns and clinical potential of doublecortin-like kinase 1(DCLK1)and leucine-rich repeat-containing G-protein-coupled receptor 5(Lgr5),as prognostic CSC markers of colorectal cancer(CRC).METHODS The expression of DCLK1 and Lgr5 in CRC tissue sections from 92 patients was determined by immunohistochemistry.Each case was evaluated using a combined scoring method based on signal intensity staining(scored 0-3)and the proportion of positively stained cancer cells(scored 0-3).The final staining score was calculated as the intensity score multiplied by the proportion score.Low expression of DCLK1 and Lgr5 was defined as a score of 0-3;high expression of DCLK1 and Lgr5 was defined as a score of≥4.Specimens were categorized as either high or low expression,and the correlation between the expression of DCLK1 or Lgr5 and clinicopathological factors was investigated.RESULTS DCLK1 and Lgr5 expression levels were significantly positively correlated.CRC patients with high DCLK1,Lgr5 and DCLK1/Lgr5 expressions had poorer progression-free survival and overall survival.Moreover,high expression of DCLK1 was an independent prognostic factor for recurrence and overall survival in patients with CRC by multivariate analysis(P=0.026 and P=0.049,respectively).CONCLUSION DCLK1 may be a potential CSC marker for the recurrence and survival of CRC patients.
文摘The rapid spread of the highly pathogenic A/H5N1 avian influenza virus among domestic birds and its transmission to humans has induced world-wide fears of a new influenza pandemic. A/H5N1 has infected over 300 people since 1997, and has shown a mortality rate of over 50%. The high mortality in human cases is thought to be enhanced by the excessive secretion of various endogenous factors, including cytokines and interleukins, stimulated by viral infections. Chickens infected with A/H5N1 viruses experience sudden death without showing severe clinical symptoms or inflammation. However, severe hemorrhage and congestion are seen in various tissues in sporadic chicken cases of A/H5N1-infections, especially in the pulmonary tissues, thus indicating that there is ischemia due to vascular abnormalities. Our previous studies have focused on the expression pattern of endothelin-1, which modulates the vascular tone via endothelin receptors. An Indonesian sporadic strain of A/H5N1 virus was intranasally administered to 10-day-old chicks, and the expression of endothelin was examined in the infected birds. All birds died within five days of inoculation, and had moderate inflammation accompanied by severe hemorrhage and congestion in the lungs. Immunohistochemical studies showed enhanced expression of endothelin-1 in the infected lungs. In addition, the real-time PCR analyses revealed that endothelin-1 and endothelin receptor A mRNA were significantly elevated in the birds with A/H5N1 infections. Subsequently, H5N1-infected birds were inoculated with bosentan hydrate, a competitive antagonist of endothelin receptors. Interestingly, the mortality rate of the infected birds was dramatically decreased in a dose-dependent manner by the administration of bosentan hydrate. The pathological lesions, including congestion and hemorrhage in the pulmonary tissues, were clearly inhibited. These findings are promising, and suggest that endothelin receptor antagonists are a potential treatment for the highly pathogenic avian flu.
文摘The present study examines the effects of serotonin (5-HT) 1A receptor ligands on humoral im-mune response in two rat lines selected for over 75 generations for the enhancement or elimination of aggression. Activation of presynaptic 5-HT1A receptors with a low dose of the selective 5-HT1A receptor agonist 8-OH-DPAT (0.1 mg/kg) or the blockade of postsynaptic 5-HT1A receptors with the antagonist WAY-100635 (1.0 mg/kg) did not affect the numbers of IgM-antibody forming cells (IgM-AFC) in the spleen of highly aggressive rats, which were characterized by higher immune responsiveness compared to nonaggressive line. On the other hand, the same doses of 8-OH-DPAT and WAY-100635, as well as a higher dose of 8-OH-DPAT (1.0 mg/kg), which is known to activate postsynaptic 5-HT1A receptors, produce immunostimulation in nonaggressive rats. However, only the highest dose of 8-OH-DPAT (5.0 mg/kg) was able to cause immunosuppression in nonaggressive rats that was mainly dependent on stimulation of postsynaptic 5-HT1A receptors. In contrast to nonaggressive rats, the dose of 1.0 mg/kg 8-OH-DPAT was sufficient to produce a decrease in the numbers of IgM-AFC in highly aggressive rats. Thus, pharmacological activation of pre- and postsynaptic 5-HT1A receptors, as well as the blockade of postsynaptic 5-HT1A receptors, produced different effects on the immune response in two lines of rats selected for high level of aggression or its absence. These data may have implications for more efficient treatments of a number of mental disorders associated with abnormal aggression.