The mechanical behavior of superplastic 5083 aluminum alloy during microforming process was investigated by finite element analysis.A micro V-groove die was modeled to analyze the effects of forming time,load and temp...The mechanical behavior of superplastic 5083 aluminum alloy during microforming process was investigated by finite element analysis.A micro V-groove die was modeled to analyze the effects of forming time,load and temperature on the microformability of the 5083 aluminum alloy.First,the microformability of the 5083 aluminum alloy was estimated using a microformability index.The simulation results show that the microformability increases with the forming load,time and temperature increasing.Superplasticity of the 5083 aluminum alloy during microforming using the V-groove die was also investigated in terms of the effective strain rate.The results show that the superplasticity of the 5083 aluminum alloy occurs in a specific part of the material for a specific period during the microforming process depending on the forming conditions and the microformability index.展开更多
Laser beam welding of aluminum alloys is expected to offer good mechanical properties of welded joints. In this experimental work reported, CO2 laser beam autogenoas welding and wire feed welding are conducted on 4 mm...Laser beam welding of aluminum alloys is expected to offer good mechanical properties of welded joints. In this experimental work reported, CO2 laser beam autogenoas welding and wire feed welding are conducted on 4 mm thick 5083- H321 aluminum alloy sheets at different welding variables. The mechanical properties and microstructure characteristics of the welds are evaluated through tensile tests, micro-hardness tests, optical microscopy and scanning electron microscopy (SEM). Experimental results indicate that both the tensile strength and hardness of laser beam welds are affected by the constitution of filler material, except the yield strength. The soften region of laser beam welds is not in the heat-affected zone ( HAZ ). The tensile fracture of laser beam welded specimens takes place in the weld zone and close to the weld boundary because of different filler materials. Some pores are found on the fracture face, including hydrogen porosities and blow holes, but these pores have no influence on the tensile strength of laser beam welds. Tensile strength values of laser beam welds with filler wire are up to 345.57 MPa, 93% of base material values, and yield strengths of laser beam welds are equivalent to those of base metal (264. 50 MPa).展开更多
Marine corrosion and biofouling seriously affect the service life of marine structural materials,resulting in performance failure,enormous economic loss,and even catastrophic safety accidents.It is worthwhile and desi...Marine corrosion and biofouling seriously affect the service life of marine structural materials,resulting in performance failure,enormous economic loss,and even catastrophic safety accidents.It is worthwhile and desirable to develop high-efficiency strategy for anti-corrosion and anti-biofouling.In this paper,superhydrophobic 5083 aluminum alloy(AA5083)surface with micro-nano hierarchical morphology was fabricated through anodization followed by 1H,1H,2H,2H-perfluorooctyltriethoxysilane(POTS)modification.The surface morphologies,roughness,and chemical compositions were revealed by scanning electron microscopy,atomic force microscopy,and X-ray diffraction.The self-cleaning ability,corrosion resistance and algae adhesion suppression ability of the fabricated surfaces were investigated,indicating an excellent water-proofing,anti-corrosion and anti-biofouling performance.We believe the superhydrophobic creation of metallic materials is expected to have potential applications in marine corrosion and antibiofouling fields.展开更多
As a material with good corrosion resistance,5083 aluminum alloy has a great application prospect in marine environment.In this work,the corrosion characteristics of 5083 aluminum alloy in seawater containing phosphat...As a material with good corrosion resistance,5083 aluminum alloy has a great application prospect in marine environment.In this work,the corrosion characteristics of 5083 aluminum alloy in seawater containing phosphate were investigated with Potentiodynamic Polarization,Electrochemical Impedance Spectroscopy (EIS),Scanning Electron Microscope (SEM),Energy Dispersive Spectroscopy Analysis (EDSA),X-ray Photoelectron Spectroscopy (XPS) and Laser Confocal Microscope.The results indicated that the effects of phosphate in seawater were two-fold.Firstly,phosphate slightly accelerated the corrosion of 5083 in seawater in the early stage of corrosion.HPO_4~(2-)competed with OH~-in the adsorption process on the alloy surface,which weakened the contact between OH~-and Al~(3+)near the interface of the alloy,and inhibited the formation as well as the self-repair of the passive film,thus accelerating the activation dissolution process.Compared with the natural seawater,the charge transfer resistance of 5083 in the seawater containing phosphate decreased faster during the early stage of corrosion,and the corrosion current density i_(corr) was higher in seawater containing phosphate.On the other hand,the addition of phosphate would not affect the cluster distribution of the second phase of 5083 in seawater,but it changed the composition of the corrosion product layer and had an obvious inhibitory effect on the local corrosion of 5083 in seawater.After 16-day exposure,shallower and more sparsely distributed pits could be observed on the derusted surface of 5083 in the seawater containing phosphate,and the pitting coefficient in the seawater containing phosphate was significantly lower than that in natural seawater.The reduction of pitting tendency could be realized mainly through two ways.First,the HPO_4~(2-)adsorbed on the surface of the passive film in the early stage of corrosion and repeled the corrosive anions such as Cl~-.Second,phosphate participated in the construction of the Ca HPO_4 precipitation film,which acted as a barrier and protection.展开更多
AA5454-O aluminum alloy plates with the thicknesses of 1.4 and 1.0 mm were friction-spot-joined (FSJed).The plunge speed of the joining tool was changed in a range of 100 500 mm/min under a constant rotation speed of ...AA5454-O aluminum alloy plates with the thicknesses of 1.4 and 1.0 mm were friction-spot-joined (FSJed).The plunge speed of the joining tool was changed in a range of 100 500 mm/min under a constant rotation speed of 500 r/min.The plunge depth was ranged from 1.6 mm to 2.2 mm.The tool plunge speed did not make a remarkable effect on the surface appearance and macro-structure of the FSJed zone.The average hardness of the FSJed zone was greater than or equal to that of the base metal.However,there was no remarkable tendency in the average hardness change of the FSJed zone in spite of the variation in the tool plunge speed and tool plunge depth.The increase of the tool plunge depth resulted in the increase of the tensile shear load.However,the change of the tool plunge speed did not lead to the remarkable variation in the tensile shear load of the FSJed plates.It was noteworthy that the FSJed plate exhibited the highest tensile shear load of about 4.0 kN.展开更多
AA5454-O aluminum alloy plates with thicknesses of 1.4 and 1.0 mm were friction-stir-lap-welded (FSLWed).The influences of the tool plunge depth and welding distance on surface appearance,macrostructure and mechanical...AA5454-O aluminum alloy plates with thicknesses of 1.4 and 1.0 mm were friction-stir-lap-welded (FSLWed).The influences of the tool plunge depth and welding distance on surface appearance,macrostructure and mechanical properties of the FSLWed plates were experimentally investigated.The tensile shear load of the FSLWed plates was compared with that of the adhesive-bonded plates.Defect-free FSLWed zones were successfully obtained in all the tool plunge depths and the welding distances.The FSLWed zones exhibited the relatively smooth surface morphologies.Under all the FSLWed conditions,the FSLWed zone exhibited higher average hardness than the base metal.In addition,the upper plate exhibited a higher average hardness than the lower plate,although there was no special tendency in spite of the change in the tool plunge depth and the welding distance.The maximum tensile shear load of the FSLWed plates was much higher than that of the adhesive-bonded aluminum alloy plate.Especially,under the FSLW condition of the plunge depth of 1.8 mm and the welding distance of 40 mm,the tensile shear load of the FSLWed plate reached a level about 41% greater than that of the adhesive-bonded aluminum alloy plate.In addition,the maximum tensile shear load of the FSLWed plate was increased with the increase of the welding distance.展开更多
Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study th...Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.展开更多
Friction stir butt welding (FSW) between A5052-O aluminum alloy plates with a thickness of 2 mm was performed.The rotation speeds of the welding tool were 2000 and 3000 r/min,respectively.The traverse speed was ranged...Friction stir butt welding (FSW) between A5052-O aluminum alloy plates with a thickness of 2 mm was performed.The rotation speeds of the welding tool were 2000 and 3000 r/min,respectively.The traverse speed was ranged from 100 mm/min to 900 mm/min.The defect-free welds with the very smooth surface morphology were successfully obtained,except for at the welding condition of 3000 r/min and 100 mm/min.The onion ring structure was observed in the friction-stir-welded zone (SZ) at the condition of 2000 r/min and 100 mm/min.For all the welding conditions,the grain size of the SZ was smaller than that of the base metal,and was decreased with the decrease of the tool rotation speed and with the increase of the tool traverse speed.The stir zone exhibited higher average hardness than the base metal.The decrease of the tool rotation speed and the increase of the tool traverse speed resulted in the increase in the average hardness of the SZ.The tensile strength of the FSWed plates was similar to that of the base metal,except for at the welding condition of 3000 r/min and 100 mm/min.The total elongation of the FSWed plates was lower than that of the base metal.展开更多
With the popularization of friction stir welding(FSW),5083-H321 and 6061-T6 aluminum alloy materials are widely used during the FSW process.In this study,the fatigue life of friction stir welding with two materials,i....With the popularization of friction stir welding(FSW),5083-H321 and 6061-T6 aluminum alloy materials are widely used during the FSW process.In this study,the fatigue life of friction stir welding with two materials,i.e.,5083-H321 and 6061-T6 aluminum alloy,are studied.Fatigue tests were carried out on the base metal of these two materials as well as on the butt joints and overlapping FSW samples.The principle of the equivalent structural stress method is used to analyze the FSW test data of these two materials.The fatigue resistances of these two materials were com-pared and a unified principal S-N curve equation was fitted.Two key parameters of the unified principal S-N curve obtained by fitting,Cd is 4222.5,and h is 0.2693.A new method for an FSW fatigue life assessment was developed in this study and can be used to calculate the fatigue life of different welding forms with a single S-N curve.Two main fatigue tests of bending and tension were used to verify the unified principal S-N curve equation.The results show that the fatigue life calculated by the unified mean 50%master S-N curve parameters are the closest to the fatigue test results.The reliability,practicability,and generality of the master S-N curve fitting parameters were verified using the test data.The unified principal S-N curve acquired in this study can not only be used in aluminum alloy materials but can also be applied to other materials.展开更多
A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was st...A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was studied. Field emission scanning electron microscopy(FE-SEM) was adopted to reveal the morphological and microstructural features of as-fabricated oxide layers. The corrosion protection properties of the films were investigated by electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The results showed that increasing the concentration of the double ionic layer located at the oxide interface could accelerate the film growth rate. The anodic oxidative layer with thickness of 8-9 μm and pore diameter of 10-14 nm maintains the pattern and topography of workpieces, compared with the overall closed film with hierarchical structure. Both samples exhibited much lower corrosion current density after boil water sealing. Meanwhile, a superior stability could be achieved through raising the ambient temperature.展开更多
To study the influence of blank holder type on the drawability of 5182-O aluminum sheet at room temperature, the flat blank holder and curved blank holder were employed during the deep drawing process. The microstruct...To study the influence of blank holder type on the drawability of 5182-O aluminum sheet at room temperature, the flat blank holder and curved blank holder were employed during the deep drawing process. The microstructures were characterized by optical microscopy (OM). The results reveal that the limiting drawing ratio (LDR) of 5182-O aluminum alloy sheet is 1.7 using the flat blank holder. The drawn cup have severe earring. Compared with using flat blank holder, the LDR of 5182-O aluminum alloy sheet is enhanced to 2.0 using curved blank holder. In addition, the earring ratio also reduces and flange wrinkling is prevented when the curved blank holder is used. These are due to a more uniform sheet flow in different directions with curved blank holder.展开更多
基金Project supported by Development Program of Local Science Park by the ULSAN Metropolitan City and the MEST(Ministry of Education,Science and Technology)Project supported by Basic Science Research Program,the National Research Foundation of Korea(2011-0026072)
文摘The mechanical behavior of superplastic 5083 aluminum alloy during microforming process was investigated by finite element analysis.A micro V-groove die was modeled to analyze the effects of forming time,load and temperature on the microformability of the 5083 aluminum alloy.First,the microformability of the 5083 aluminum alloy was estimated using a microformability index.The simulation results show that the microformability increases with the forming load,time and temperature increasing.Superplasticity of the 5083 aluminum alloy during microforming using the V-groove die was also investigated in terms of the effective strain rate.The results show that the superplasticity of the 5083 aluminum alloy occurs in a specific part of the material for a specific period during the microforming process depending on the forming conditions and the microformability index.
基金This research was supported by Major Subject Foundation of Beijing University of Technology
文摘Laser beam welding of aluminum alloys is expected to offer good mechanical properties of welded joints. In this experimental work reported, CO2 laser beam autogenoas welding and wire feed welding are conducted on 4 mm thick 5083- H321 aluminum alloy sheets at different welding variables. The mechanical properties and microstructure characteristics of the welds are evaluated through tensile tests, micro-hardness tests, optical microscopy and scanning electron microscopy (SEM). Experimental results indicate that both the tensile strength and hardness of laser beam welds are affected by the constitution of filler material, except the yield strength. The soften region of laser beam welds is not in the heat-affected zone ( HAZ ). The tensile fracture of laser beam welded specimens takes place in the weld zone and close to the weld boundary because of different filler materials. Some pores are found on the fracture face, including hydrogen porosities and blow holes, but these pores have no influence on the tensile strength of laser beam welds. Tensile strength values of laser beam welds with filler wire are up to 345.57 MPa, 93% of base material values, and yield strengths of laser beam welds are equivalent to those of base metal (264. 50 MPa).
基金the National Natural Science Foundation of China(Nos.41376003,41806089,41827805)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA13040405)。
文摘Marine corrosion and biofouling seriously affect the service life of marine structural materials,resulting in performance failure,enormous economic loss,and even catastrophic safety accidents.It is worthwhile and desirable to develop high-efficiency strategy for anti-corrosion and anti-biofouling.In this paper,superhydrophobic 5083 aluminum alloy(AA5083)surface with micro-nano hierarchical morphology was fabricated through anodization followed by 1H,1H,2H,2H-perfluorooctyltriethoxysilane(POTS)modification.The surface morphologies,roughness,and chemical compositions were revealed by scanning electron microscopy,atomic force microscopy,and X-ray diffraction.The self-cleaning ability,corrosion resistance and algae adhesion suppression ability of the fabricated surfaces were investigated,indicating an excellent water-proofing,anti-corrosion and anti-biofouling performance.We believe the superhydrophobic creation of metallic materials is expected to have potential applications in marine corrosion and antibiofouling fields.
基金supported by the National Natural Science Foundation of China (No. U1706221)。
文摘As a material with good corrosion resistance,5083 aluminum alloy has a great application prospect in marine environment.In this work,the corrosion characteristics of 5083 aluminum alloy in seawater containing phosphate were investigated with Potentiodynamic Polarization,Electrochemical Impedance Spectroscopy (EIS),Scanning Electron Microscope (SEM),Energy Dispersive Spectroscopy Analysis (EDSA),X-ray Photoelectron Spectroscopy (XPS) and Laser Confocal Microscope.The results indicated that the effects of phosphate in seawater were two-fold.Firstly,phosphate slightly accelerated the corrosion of 5083 in seawater in the early stage of corrosion.HPO_4~(2-)competed with OH~-in the adsorption process on the alloy surface,which weakened the contact between OH~-and Al~(3+)near the interface of the alloy,and inhibited the formation as well as the self-repair of the passive film,thus accelerating the activation dissolution process.Compared with the natural seawater,the charge transfer resistance of 5083 in the seawater containing phosphate decreased faster during the early stage of corrosion,and the corrosion current density i_(corr) was higher in seawater containing phosphate.On the other hand,the addition of phosphate would not affect the cluster distribution of the second phase of 5083 in seawater,but it changed the composition of the corrosion product layer and had an obvious inhibitory effect on the local corrosion of 5083 in seawater.After 16-day exposure,shallower and more sparsely distributed pits could be observed on the derusted surface of 5083 in the seawater containing phosphate,and the pitting coefficient in the seawater containing phosphate was significantly lower than that in natural seawater.The reduction of pitting tendency could be realized mainly through two ways.First,the HPO_4~(2-)adsorbed on the surface of the passive film in the early stage of corrosion and repeled the corrosive anions such as Cl~-.Second,phosphate participated in the construction of the Ca HPO_4 precipitation film,which acted as a barrier and protection.
基金financially supported by the Ministry of Education,Science Technology(MEST)and National Research Foundation of Korea(NRF)through the Human Resource Training Project for Regional Innovationby the development program of local science park funded by the ULSAN Metropolitan City and the Ministry of Education,Science and Technology(MEST)
文摘AA5454-O aluminum alloy plates with the thicknesses of 1.4 and 1.0 mm were friction-spot-joined (FSJed).The plunge speed of the joining tool was changed in a range of 100 500 mm/min under a constant rotation speed of 500 r/min.The plunge depth was ranged from 1.6 mm to 2.2 mm.The tool plunge speed did not make a remarkable effect on the surface appearance and macro-structure of the FSJed zone.The average hardness of the FSJed zone was greater than or equal to that of the base metal.However,there was no remarkable tendency in the average hardness change of the FSJed zone in spite of the variation in the tool plunge speed and tool plunge depth.The increase of the tool plunge depth resulted in the increase of the tensile shear load.However,the change of the tool plunge speed did not lead to the remarkable variation in the tensile shear load of the FSJed plates.It was noteworthy that the FSJed plate exhibited the highest tensile shear load of about 4.0 kN.
基金financially supported by the Ministry of Education,Science Technology(MEST)and National Research Foundation of Korea(NRF)through the Human Resource Training Project for Regional Innovationby the development program of local science park funded by the ULSAN Metropolitan City and the MEST(Ministry of Education,Science and Technology)
文摘AA5454-O aluminum alloy plates with thicknesses of 1.4 and 1.0 mm were friction-stir-lap-welded (FSLWed).The influences of the tool plunge depth and welding distance on surface appearance,macrostructure and mechanical properties of the FSLWed plates were experimentally investigated.The tensile shear load of the FSLWed plates was compared with that of the adhesive-bonded plates.Defect-free FSLWed zones were successfully obtained in all the tool plunge depths and the welding distances.The FSLWed zones exhibited the relatively smooth surface morphologies.Under all the FSLWed conditions,the FSLWed zone exhibited higher average hardness than the base metal.In addition,the upper plate exhibited a higher average hardness than the lower plate,although there was no special tendency in spite of the change in the tool plunge depth and the welding distance.The maximum tensile shear load of the FSLWed plates was much higher than that of the adhesive-bonded aluminum alloy plate.Especially,under the FSLW condition of the plunge depth of 1.8 mm and the welding distance of 40 mm,the tensile shear load of the FSLWed plate reached a level about 41% greater than that of the adhesive-bonded aluminum alloy plate.In addition,the maximum tensile shear load of the FSLWed plate was increased with the increase of the welding distance.
基金partially supported by the Iran National Science Foundation(INSF) with grant number 92014140
文摘Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.
基金financially supported by the Ministry of Education,Science Technology(MEST)and National Research Foundation of Korea(NRF)through the Human Resource Training Project for Regional Innovationby the development program of local science park funded by the ULSAN Metropolitan City and the Ministry of Education,Science and Technology(MEST)
文摘Friction stir butt welding (FSW) between A5052-O aluminum alloy plates with a thickness of 2 mm was performed.The rotation speeds of the welding tool were 2000 and 3000 r/min,respectively.The traverse speed was ranged from 100 mm/min to 900 mm/min.The defect-free welds with the very smooth surface morphology were successfully obtained,except for at the welding condition of 3000 r/min and 100 mm/min.The onion ring structure was observed in the friction-stir-welded zone (SZ) at the condition of 2000 r/min and 100 mm/min.For all the welding conditions,the grain size of the SZ was smaller than that of the base metal,and was decreased with the decrease of the tool rotation speed and with the increase of the tool traverse speed.The stir zone exhibited higher average hardness than the base metal.The decrease of the tool rotation speed and the increase of the tool traverse speed resulted in the increase in the average hardness of the SZ.The tensile strength of the FSWed plates was similar to that of the base metal,except for at the welding condition of 3000 r/min and 100 mm/min.The total elongation of the FSWed plates was lower than that of the base metal.
基金Supported by Department of Education of Liaoning Province(Grant No.JDL2020019)Dalian High Level Talents Project(Grant No.2017RQ132).
文摘With the popularization of friction stir welding(FSW),5083-H321 and 6061-T6 aluminum alloy materials are widely used during the FSW process.In this study,the fatigue life of friction stir welding with two materials,i.e.,5083-H321 and 6061-T6 aluminum alloy,are studied.Fatigue tests were carried out on the base metal of these two materials as well as on the butt joints and overlapping FSW samples.The principle of the equivalent structural stress method is used to analyze the FSW test data of these two materials.The fatigue resistances of these two materials were com-pared and a unified principal S-N curve equation was fitted.Two key parameters of the unified principal S-N curve obtained by fitting,Cd is 4222.5,and h is 0.2693.A new method for an FSW fatigue life assessment was developed in this study and can be used to calculate the fatigue life of different welding forms with a single S-N curve.Two main fatigue tests of bending and tension were used to verify the unified principal S-N curve equation.The results show that the fatigue life calculated by the unified mean 50%master S-N curve parameters are the closest to the fatigue test results.The reliability,practicability,and generality of the master S-N curve fitting parameters were verified using the test data.The unified principal S-N curve acquired in this study can not only be used in aluminum alloy materials but can also be applied to other materials.
文摘A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was studied. Field emission scanning electron microscopy(FE-SEM) was adopted to reveal the morphological and microstructural features of as-fabricated oxide layers. The corrosion protection properties of the films were investigated by electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The results showed that increasing the concentration of the double ionic layer located at the oxide interface could accelerate the film growth rate. The anodic oxidative layer with thickness of 8-9 μm and pore diameter of 10-14 nm maintains the pattern and topography of workpieces, compared with the overall closed film with hierarchical structure. Both samples exhibited much lower corrosion current density after boil water sealing. Meanwhile, a superior stability could be achieved through raising the ambient temperature.
基金Project(CDJZR14130009)supported by the Fundamental Research Funds for the Central Universities,China
文摘To study the influence of blank holder type on the drawability of 5182-O aluminum sheet at room temperature, the flat blank holder and curved blank holder were employed during the deep drawing process. The microstructures were characterized by optical microscopy (OM). The results reveal that the limiting drawing ratio (LDR) of 5182-O aluminum alloy sheet is 1.7 using the flat blank holder. The drawn cup have severe earring. Compared with using flat blank holder, the LDR of 5182-O aluminum alloy sheet is enhanced to 2.0 using curved blank holder. In addition, the earring ratio also reduces and flange wrinkling is prevented when the curved blank holder is used. These are due to a more uniform sheet flow in different directions with curved blank holder.