SF_(6)电气设备内部的分解组分可以通过可调谐吸收光谱技术进行检测,其中CO_(2)浓度反映了设备内部的绝缘缺陷情况。因此,通过准确测量CO_(2)浓度可以及时发现设备潜在的绝缘故障。为克服传统最小二乘法浓度反演模型稳定性较差的问题,...SF_(6)电气设备内部的分解组分可以通过可调谐吸收光谱技术进行检测,其中CO_(2)浓度反映了设备内部的绝缘缺陷情况。因此,通过准确测量CO_(2)浓度可以及时发现设备潜在的绝缘故障。为克服传统最小二乘法浓度反演模型稳定性较差的问题,文中基于改进的旗鱼优化算法(Improved Sailed Fish Optimizer,ISFO)与核极限学习机(Kernel Based Extreme Learning Machine,KELM)建立了ISFO-KELM气体浓度反演模型。利用多策略初始化方法、Levy随机步长、柯西变异和自适应t分布变异等技术提升了旗鱼优化算法寻优能力和跳出局部最优解能力。实验结果表明,该模型具有高精度和鲁棒性,并且在稳定性和泛化能力方面优于最小二乘法、极限学习机、反向传播(Back Propagation,BP)神经网络等传统方法,对评估SF_(6)电气设备运行状态具有重要意义。展开更多
A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composit...A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composite pressure vessels. The algorithm and efficiency of SBPSO are displayed through numerical examples. A model for filament-wound composite pressure vessels with metallic liner is then studied by netting analysis and its responses are analyzed by using Finite element method (performed by software ANSYS). An optimization problem for maximizing the performance factor is formulated by choosing the winding orientation of the helical plies in the cylindrical portion, the thickness of metal liner and the drop off region size as the design variables. Strength constraints for composite layers and the metal liner are constructed by using Tsai-Wu failure criterion and Mises failure criterion respectively. Numerical examples show that the method proposed can effectively solve the RBRD problem, and the optimal results of the proposed model can satisfy certain reliability requirement and have the robustness to the fluctuation of design variables.展开更多
The reliability-based optimization, the relia- bility-based sensitivity analysis and robust design method are employed to propose an effective approach for reliability-based robust design optimization of vehicle compo...The reliability-based optimization, the relia- bility-based sensitivity analysis and robust design method are employed to propose an effective approach for reliability-based robust design optimization of vehicle components in Part I. Applications of the method are further discussed for reliability-based robust optimization of vehicle components in this paper. Examples of axles, torsion bar, coil and composite springs are illustrated for numerical investigations. Results have shown the proposed method is an efficient method for reliability-based robust design optimization of vehicle components.展开更多
The reliability-based design optimization, the reliability sensitivity analysis and robust design method are employed to present a practical and effective approach for reliability-based robust design optimization of v...The reliability-based design optimization, the reliability sensitivity analysis and robust design method are employed to present a practical and effective approach for reliability-based robust design optimization of vehicle components. A procedure for reliability-based robust design optimization of vehicle components is proposed. Application of the method is illustrated by reliability-based robust design optimization of axle and spring. Numerical results have shown that the proposed method can be trusted to perform reliability-based robust design optimization of vehicle components.展开更多
Knowledge-based engineering(KBE) has made success in automobile and molding design industry, and it is introduced into the ship structural design in this paper. From the implementation of KBE, the deterministic design...Knowledge-based engineering(KBE) has made success in automobile and molding design industry, and it is introduced into the ship structural design in this paper. From the implementation of KBE, the deterministic design solutions for both rules design method(RDM) and interpolation design method(IDM) are generated. The corresponding finite element model is generated. Gaussian process(GP) is then employed to build the surrogate model for finite element analysis, in order to increase efficiency and maintain accuracy at the same time, and the multi-modal adaptive importance sampling method is adopted to calculate the corresponding structural reliability.An example is given to validate the proposed method. Finally, the reliabilities of the structures' strength caused by uncertainty lying in water corrosion, static and wave moments are calculated, and the ship structures are optimized to resist the water corrosion by multi-island genetic algorithm. Deterministic design results from the RDM and IDM are compared with each separate robust design result. The proposed method shows great efficiency and accuracy.展开更多
文摘SF_(6)电气设备内部的分解组分可以通过可调谐吸收光谱技术进行检测,其中CO_(2)浓度反映了设备内部的绝缘缺陷情况。因此,通过准确测量CO_(2)浓度可以及时发现设备潜在的绝缘故障。为克服传统最小二乘法浓度反演模型稳定性较差的问题,文中基于改进的旗鱼优化算法(Improved Sailed Fish Optimizer,ISFO)与核极限学习机(Kernel Based Extreme Learning Machine,KELM)建立了ISFO-KELM气体浓度反演模型。利用多策略初始化方法、Levy随机步长、柯西变异和自适应t分布变异等技术提升了旗鱼优化算法寻优能力和跳出局部最优解能力。实验结果表明,该模型具有高精度和鲁棒性,并且在稳定性和泛化能力方面优于最小二乘法、极限学习机、反向传播(Back Propagation,BP)神经网络等传统方法,对评估SF_(6)电气设备运行状态具有重要意义。
基金supported by the Natural Science Foundation of China(No.10772070)National Basic Research Program of China(No.2011CB013800)
文摘A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composite pressure vessels. The algorithm and efficiency of SBPSO are displayed through numerical examples. A model for filament-wound composite pressure vessels with metallic liner is then studied by netting analysis and its responses are analyzed by using Finite element method (performed by software ANSYS). An optimization problem for maximizing the performance factor is formulated by choosing the winding orientation of the helical plies in the cylindrical portion, the thickness of metal liner and the drop off region size as the design variables. Strength constraints for composite layers and the metal liner are constructed by using Tsai-Wu failure criterion and Mises failure criterion respectively. Numerical examples show that the method proposed can effectively solve the RBRD problem, and the optimal results of the proposed model can satisfy certain reliability requirement and have the robustness to the fluctuation of design variables.
文摘The reliability-based optimization, the relia- bility-based sensitivity analysis and robust design method are employed to propose an effective approach for reliability-based robust design optimization of vehicle components in Part I. Applications of the method are further discussed for reliability-based robust optimization of vehicle components in this paper. Examples of axles, torsion bar, coil and composite springs are illustrated for numerical investigations. Results have shown the proposed method is an efficient method for reliability-based robust design optimization of vehicle components.
文摘The reliability-based design optimization, the reliability sensitivity analysis and robust design method are employed to present a practical and effective approach for reliability-based robust design optimization of vehicle components. A procedure for reliability-based robust design optimization of vehicle components is proposed. Application of the method is illustrated by reliability-based robust design optimization of axle and spring. Numerical results have shown that the proposed method can be trusted to perform reliability-based robust design optimization of vehicle components.
基金the Project of Ministry of Finance andMinistry of Education of China(Nos.200512 and201335)the State Key Laboratory of Ocean Engineering Foundation of Shanghai Jiao Tong University(No.GKZD010053-10)
文摘Knowledge-based engineering(KBE) has made success in automobile and molding design industry, and it is introduced into the ship structural design in this paper. From the implementation of KBE, the deterministic design solutions for both rules design method(RDM) and interpolation design method(IDM) are generated. The corresponding finite element model is generated. Gaussian process(GP) is then employed to build the surrogate model for finite element analysis, in order to increase efficiency and maintain accuracy at the same time, and the multi-modal adaptive importance sampling method is adopted to calculate the corresponding structural reliability.An example is given to validate the proposed method. Finally, the reliabilities of the structures' strength caused by uncertainty lying in water corrosion, static and wave moments are calculated, and the ship structures are optimized to resist the water corrosion by multi-island genetic algorithm. Deterministic design results from the RDM and IDM are compared with each separate robust design result. The proposed method shows great efficiency and accuracy.