BACKGROUND: To date, a complete protein expression profile of the midbrain substantia nigra in a mouse model of chronic Parkinson's disease, induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), does ...BACKGROUND: To date, a complete protein expression profile of the midbrain substantia nigra in a mouse model of chronic Parkinson's disease, induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), does not exist. In addition, there are no reports of analysis of differential protein expression. OBJECTIVE: To separate and evaluate MPTP-induced differential protein expression through the use of proteomics in the substantia nigra of a mouse model of chronic Parkinson's disease. DESIGN: Randomized controlled animal study. SETTING: Department of Neurology, the First Affiliated Hospital, Chongqing Medical University. MATERIALS: Sixteen 8-10-week old, healthy, male, C57BL mice, weighing 20-25 g, and of clean grade, were provided by the Experimental Animal Center of Chongqing Medical University. The experimental animals were disposed according to ethical criteria. MPTP was provided by Sigma Company, USA; Pdquest 2D image analysis software and gelatum/irradiance image analysis system (ChemiDoc XRS) by Bio-Rad, USA; and Voyager DE-PROMALD1-TOF-MS mass spectroscopy analyzer by AB1 Company, USA. METHODS: This study was performed in Chongqing Neurological Laboratory between November 2006 and July 2007. Mice were randomly divided into model and control groups, with 8 mice in each group. Mice in the model group were received a subcutaneous injection of MPTP (25 mg&g), twice a week, for five successive weeks, to establish a chronic Parkinson's disease model. Mice in the control group received the same volume of a subcutaneous saline injection at the same time points. Mice were sacrificed by anesthesia to rapidly obtain the midbrain for protein separation of the substantia nigra. MAIN OUTCOME MEASURES: (1) 2-ED handbook (Bio-Rad Company) was referenced for two-dimensional electrophoresis, (2) PDQUEST8,0 analytical electrophoresis pattern was adopted to evaluate differential protein expression. (3) Peptide mass finger print map and data were retrieved on http://www.prospector.ucsf.edu to compare differential substantia nigral protein expression in the two groups. RESULTS: Two-dimensional gel electrophoresis of substantia nigra tissue indicated that there were 33 differential protein expressions between the two groups. Three new proteins were evaluated, including α -enolase, which exhibited regulated expression, tumor necrosis factor ligand superfamily member 4, and cyclin-dependent kinase inhibitor 1B. CONCLUSION: There are three proteins that exhibit differential expression in the substantia nigra- α -enolase, tumor necrosis factor ligand superfamily member 4, and cyclin-dependent kinase inhibitor 1B.展开更多
The crystal structure of the title compound ethyl 3-(4-chlorophenyl)-3,4-dihydro-6- methyl-4-oxo-2-(pyrrolidin-1-yl)furo[2,3-d]pyrimidine-5-carboxylate (C20H20ClN3O4, Mr= 401.84) has been prepared and determined...The crystal structure of the title compound ethyl 3-(4-chlorophenyl)-3,4-dihydro-6- methyl-4-oxo-2-(pyrrolidin-1-yl)furo[2,3-d]pyrimidine-5-carboxylate (C20H20ClN3O4, Mr= 401.84) has been prepared and determined by single-crystal X-ray diffraction. The crystal is of monoclinic, space group P21/n with a = 20.6215(9), b = 8.5311(4), c = 21.6886(9) A^°, β = 91.607(1)°, V = 3814.0(3)A^°^3, Z = 8, Dc = 1.400 g/cm^3, F(000) = 1680, μ = 0.233 mm^-1, R = 0.0718 and wR = 0.1545 for 6717 observed reflections with I 〉 2σ(I). X-ray diffraction analysis reveals two crystallographically independent molecules in the asymmetric unit.展开更多
Two new Schiff bases based on 5-chloro-3-methyl-1-phenyl-1 H-pyrazole-4-carbaldehyde, namely, N-((5-chloro-3-methyl-1-phenyl-1 H-pyrazol-4-yl)methylene)-4-morpholinoaniline(Ⅲa) and N-((5-chloro-3-methyl-1-phenyl-1 H-...Two new Schiff bases based on 5-chloro-3-methyl-1-phenyl-1 H-pyrazole-4-carbaldehyde, namely, N-((5-chloro-3-methyl-1-phenyl-1 H-pyrazol-4-yl)methylene)-4-morpholinoaniline(Ⅲa) and N-((5-chloro-3-methyl-1-phenyl-1 H-pyrazol-4-yl)methylene)-3-fluoro-4-morpholinoaniline(Ⅲb), were synthesized and characterized by IR, LC-MS, 1 H NMR and 13 C NMR spectroscopy. Meanwhile, the three-dimensional configurations of the two title compounds were further characterized by single-crystal X-ray diffraction analyses. Both the compounds are thermodynamically stable trans-isomers. Moreover, the fluorescence properties and antioxidant activities against DPPH of the two target compounds have been investigated, and the results showed that the title compounds both have fluorescence performance and certain antioxidant activities against DPPH radical.展开更多
At present, pathogenesis and mechanism of Parkinson disease (PD) are still unclear. Animal models of PD are essential tools in studies on etiology and therapy and should mimic the chronic pathological process, histo...At present, pathogenesis and mechanism of Parkinson disease (PD) are still unclear. Animal models of PD are essential tools in studies on etiology and therapy and should mimic the chronic pathological process, histological characteristics and motor behavior dysfunction. In recent years, transgenic mice have been widely utilized to study the mechanism of PD, and it has become imperative that a PD mouse model of motor behavioral dysfunction be established. OBJECTIVE: To compare the behavioral and histochemical characters of two neurotoxic mice model induced with 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1, 2, 3, 6 -tetrahydropyridine (MPTP), and a better method to mimic Parkinson disease will be found out. DESIGN: Parallel experiment. SETTING: Laboratory of Molecular Genetics, Department of Medical Genetics, Shanghai Jiao Tohg University. MATERIALS: Sixty 129Sv/C57BL6J male wild mice, SPF grade, 8 - 12 weeks old, weighing 20 - 25 g, were provided by Experimental Animal Center, Shanghai Jiao Tong University. All the surgery operation was performed according to the rules of Shanghai Jiaotong University Animal Committee. METHODS: The experiment was carried out in the Laboratory of Molecular Genetics (National Key Laboratory), Department of Medical Genetics, Shanghai Jiao Ttong University from March to August 2006. ①Thirty-two male mice were randomly divided into control group and drug treatment group with 16 mice in each group. Surgery was carried out and 6-OHDA was administrated to substantia nigra pars compacta (SNpc) and nigra-striatum pathway according to the different parameters with intoxication apparatus. Saline was injected to the other 16 mice according to the same paradigm. 1 mg/kg apomorphine was injected intraperitoneally 2 weeks later after surgery to induce the imbalanced rotation behavior for 40 minutes. ②Twenty-eight mice were randomly divided into 4 groups with 7 in each group, including low-dose, moderate-dose, high-dose groups and negative control group. Then, mice in the drug treatment group were injected intraperitoneally with 5, 10 and 15 mg/kg MPTP for 9 successive days. In addition, mice in the control group were injected with the same volume of saline for 9 days. Pole test and stride length test were utilized to detect coordinative behavioral dysfunction. Mice were sacrificed 20 days after MPTP treatment, and histochemical staining of tyrosine hydroxynase (TH) was used to observe the loss of dopaminergic neuron in SNpc. MAIN OUTCOME MEASURES: ① Success ratio of each model establishment method; ② inducible asymmetric cycle behavior test 2 weeks after 6-OHDA injection; ③behavioral dysfunction in pole test and stride length, morphological changes in brain tissue. RESULTS: Totally sixty mice were used in this experiment and 3 mice were excluded because of the hypersensitivity or the clumsy reaction in motor behavioral detection before MPTP treatment, therefore, data was analyzed with the rest 57 mice. ① Lethal ratio: Three out of 16 mice died in striatum injection group and 5 out of 16 mice died in nigro-striatal pathway group. No mouse died in MPTP treatment groups. ② Locomotor behavior: No dysfunction of locomotor was found in 6-OHDA treatment groups. However, several motor behavioral dysfunction were start to present at the 4th day of MPTP injection. ③ Asymmetric cycle behavior: No asymmetric cycle was induced successfully two weeks after 6-OHDA surgery. Mice show hypersensitive behavior 10 minutes after apomorphine injection, which lasted for about 20 minutes. ④ Pole test: From the 4^th day of MPTP treatment, mice started to display coordinate dysfunction, such as climbing down along the pole in spiral, moving slowly with hesitation. Some mice could not grab the pole and slide down along the pole at 4th day post injection. Comparing with 0 dose control group, all the threedrug treatment groups show significant different dysfunction from the 4th day to the 20th day post injection (P 〈 0.01). ⑤ stride length test: Mice's stride length decreased, when treated with MPTP, and the mice in the high dose group displayed obviously. ⑥ Dopaminergic neuron stained with TH in nigra pars compacta: The results indicated that administrated MPTP (from low dose to high dose) by intraperitoneal cause chronic lesions on the dopaminergic neuron in the SNpc. CONCLUSION: PD mice models induced with 6-OHDA show high mortality ratio and no asymmetric cycle was found after apomorphine injection. However, injection of MPTP intraperitoneally can simulate the chronic pathway of PD, typical histological changes are found and stable motor behavioral dysfunctions are displayed.展开更多
Infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the right common carotid artery produced hemiparkinsonian syndrome on contralateral limbs in 5 rhesus monkeys. The hemiparkinsonian syndrome produce...Infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the right common carotid artery produced hemiparkinsonian syndrome on contralateral limbs in 5 rhesus monkeys. The hemiparkinsonian syndrome produced responded to madopar medication and the circling motion changed from toward the MPTP-treated side to away from the MPTP-treated side. Long term use of madopar developed a peak-dose dyskinesia of the face and limbs at the contralateral side. The toxic effect of MPTP was confirmed biochemically by reduction of nigrostriatal DA and histologically by degeneration of nigral neurons on the MPTP-treated side. It is concluded that this hemiparkinsonian monkey model will be of value in the elucidation of the neural mechanism underlying L-DOPA or DA agonists induced dyskinesia in Parkinson’s disease and in the search for newer methods of treatment which would produce less dyskinesia.展开更多
~3H-2-deoxyglucose (2-DG) autoradiographic technique was used to study the ef feets of a monoamine-oxidase-B (MAO-B) inhibitor deprenyl and the neurotoxin Ⅰ-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) on 2-D...~3H-2-deoxyglucose (2-DG) autoradiographic technique was used to study the ef feets of a monoamine-oxidase-B (MAO-B) inhibitor deprenyl and the neurotoxin Ⅰ-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) on 2-DG uptake in the mouse brain. Following MPTP intoxication, 2-DG uptake was increased in the substantia nigra and lo(?)us ceruleus. At the same time, obvious abnormal behavior of the animals was induced. In the mice pretreated with deprenyl, 2-DG uptake was similar to that of control animal. Ab normal behavior. though present, was significantly milder than in mice given MPTP alone. It is concluded that MPTP interferes with the glucose metabolism in the substantia nigra and locus ceruleus and induces remarkable abnormal behavioral syndrome of mice. These deleterious effects can be blocked by pretreatment with deprenyl.展开更多
Dopamine cell bodies in the substantia nigra of the midbrain and with their terminals projecting to the neostriatum form the nigrostriatum and these dopamine neurons degenerate in Parkinson’s disease (PD). Based on m...Dopamine cell bodies in the substantia nigra of the midbrain and with their terminals projecting to the neostriatum form the nigrostriatum and these dopamine neurons degenerate in Parkinson’s disease (PD). Based on metabolic and func- tional specialization of the cell bodies versus the axon terminals, the level and disposition of dopamine, its metabolites and enzymes are different in both regions and are likely to be affected differently in PD. We examined changes in the midbrain dopamine system following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to test the hypothesis that a predisposing/sensitization stage and a inducing/precipitating stage underlie PD. Pregnant mice were treated with a low dose of MPTP during gestation days 8 - 12 to model the predisposing/sensitization stage, by interrupting the fetal mid- brain dopamine system during its neurogenesis. For the inducing/precipitating stage, the 12-weeks offspring were ad- ministered MPTP. The prenatal-MPTP offspring appear normal, but midbrain dopamine, 3,4-di-hydroxy-phenyl-acetic- acid, 3-methoxytyramine, tyrosine-hydroxylase and L-aromatic-amino-acid-decarboxylase, were reduced by 49.6%, 48%, 54%, 20.9% and 25%. Postnatal-MPTP of 10, 20, 30 mg/kg administered to the prenatal-PBS vs prenatal-MPTP offspring reduced midbrain dopamine by 43.6%, 47.2%, 70.3% vs 85.4%, 89.1%, 95.2%;tyrosine-hydroxylase by 30%, 63%, 81% vs 30.7%, 70.4%, 91.4%;L-aromatic-amino-acid-decarboxylase by 0%, 2%, 40% vs 32%, 40%, 58%. The prenatal-MPTP may render the DA system sensitive by causing sub-threshold reduction of DA, its metabolites and en- zymes, enabling postnatal-MPTP to reduce dopamine above the 70% - 80% PD-inducing threshold. Thus, the study may produce a prenatal predisposing/sensitization and postnatal inducing/precipitation model of PD. It also indicates that some cases of PD may have a fetal basis, in which sub-threshold nigrostriatal impairments occur early in life and PD-symptoms are induced during aging by further insults to the dopaminergic system that would not cause PD symptoms in normal indi-viduals.展开更多
Studying of charge-transfer (CT) and proton transfer interactions is essential due to their important role in many biological field and industrial applications. The current work will add more information’s about the ...Studying of charge-transfer (CT) and proton transfer interactions is essential due to their important role in many biological field and industrial applications. The current work will add more information’s about the nature of interaction between 3,5-diamino-1,2,4-triazole (DAT) and 6-methyl-1,3,5-triazine-2,4-diamine (MTDA) with 3,6-dichloro-2,5-dihydroxy-p-benzoquinone (chloranilic acid CLA) which was studied spectrophotometrically in Ethanol (EtOH) and Methanol (MeOH) solvents at different temperatures. The molecular composition of the formed complexes was studied by applying continuous variation and spectrophotometric titration methods and found to be 1:1 charge transfer complex for both Complex (DAT:CLA) and (MTDA:CLA) which are produced. Minimum-Maximum absorbance’s method has been applied to calculate the formation constant KCT and molecular extinction coefficient (ε);they recorded high values confirming high stability of the produced complexes. Oscillator strength (f), transition dipole moment (μ), ionization potential (IP) and dissociation energy (W) of the formed CT-complexes were also determined and evaluated;they showed solvent dependency. It is concluded that the formation constant (KCT) of the complexes is found to depend on the nature of both electron acceptor and donors and on the polarity of solvents.展开更多
Reaction of 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile) (1) with methyl iodide afforded the 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-(methylthio)nicotinonitrile) (2). Th...Reaction of 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile) (1) with methyl iodide afforded the 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-(methylthio)nicotinonitrile) (2). The reaction of 2 with hydrazine hydrate followed by diazotization reaction af-forded the 1,1’-(1,4-phenylenebis(3-amino-6-methyl-1H-pyrazolo[3,4-b]pyridine-4,5-diyl))bis(e-than-1-one) (3) and 1,1’-(1,4-phenylenebis(3-(chlorodiazenyl)-6-methyl-1H-pyrazolo[3,4-b]-pyridine-4,5-diyl))bis(ethan-1-one) (4) respectively. On the other hand, reaction of 4 with malononitrile, 2-cyanoethanethioamide, ethyl acetoacetate, acetyl acetone, ethyl benzoylacetate, diethylmalonate, ethyl cyanoacetate and phenacylbromide aiming to build up pyrazolotriazine or pyrazole ring on the ring system of 4. Structures of all newly synthesized heterocyclic compounds in the present study were confirmed by considering the data of IR, 1H NMR, mass spectra as well as that of elemental analyses.展开更多
Sodium 3,5-bis(hydroxyimino)-1-methyl-2,4,6-trioxocyclohexanide C7H5N2NaO5 (I) has been isolated as the only product of the reaction of nitrosation of methylphloroglucinol. The structure of the titled compound has bee...Sodium 3,5-bis(hydroxyimino)-1-methyl-2,4,6-trioxocyclohexanide C7H5N2NaO5 (I) has been isolated as the only product of the reaction of nitrosation of methylphloroglucinol. The structure of the titled compound has been determined from single crystal X-ray diffraction data. The hydrated C7H5N2NaO52.5H2O crystallizes in the monoclinic space group C2/c, with a(?) 16.408(3);b(?) 12.446(3);c(?) 13.716(3);(o) 126.34(3). The planar organic anion exists in a triketo-dihydroxyimino form with the C–O and C–N distances from 1.220(2) to 1.271(2)?? and from 1.292(2) to 1.293?? respectively. In the IR spectrum of I, the sharp absorption band occurred at 1681 cm-1 due to C=O stretching indicating the strong H-interactions. The correlations of theoretical (DFT-B3LYP/aug-cc-pVDZ) and experimental UV-vis absorption spectra in neutral and alkaline ethanolic solutions showed the existence of hydroxyimino-nitroso tautomerism while ionization of I.展开更多
Microglia-mediated neuroinflammation is considered a pathological feature of Parkinson's disease.Triggering receptor expressed on myeloid cell-1(TREM-1)can amplify the inherent immune response,and crucially,regula...Microglia-mediated neuroinflammation is considered a pathological feature of Parkinson's disease.Triggering receptor expressed on myeloid cell-1(TREM-1)can amplify the inherent immune response,and crucially,regulate inflammation.In this study,we found marked elevation of serum soluble TREM-1 in patients with Parkinson's disease that positively correlated with Parkinson's disease severity and dyskinesia.In a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease,we found that microglial TREM-1 expression also increased in the substantia nigra.Further,TREM-1 knockout alleviated dyskinesia in a mouse model of Parkinson's disease and reduced dopaminergic neuronal injury.Meanwhile,TREM-1 knockout attenuated the neuroinflammatory response,dopaminergic neuronal injury,and neutrophil migration.Next,we established an in vitro 1-methyl-4-phenyl-pyridine-induced BV2 microglia model of Parkinson's disease and treated the cells with the TREM-1 inhibitory peptide LP17.We found that LP17 treatment reduced apoptosis of dopaminergic neurons and neutrophil migration.Moreover,inhibition of neutrophil TREM-1 activation diminished dopaminergic neuronal apoptosis induced by lipopolysaccharide.TREM-1 can activate the downstream CARD9/NF-κB proinflammatory pathway via interaction with SYK.These findings suggest that TREM-1 may play a key role in mediating the damage to dopaminergic neurons in Parkinson's disease by regulating the interaction between microglia and peripheral neutrophils.展开更多
The title compound (R)-N′-[2-(4-methoxy-6-chloro)-pyrimidyl]-N-[3-methyl-2-(4- chlorophenyl)butyryl]-urea has been synthesized, and its crystal structure and biological behaviors were studied. Crystallographic ...The title compound (R)-N′-[2-(4-methoxy-6-chloro)-pyrimidyl]-N-[3-methyl-2-(4- chlorophenyl)butyryl]-urea has been synthesized, and its crystal structure and biological behaviors were studied. Crystallographic data: C17H18C12N4O3, Mr = 397.25, monoclinic, space group P21/c, a = 12.331(2), b = 14.025(3), c = 23.085(5) A, β = 99.607(4)°, Z = 8, V = 3936.2(13) A3, Dc = 1.341 g/cm^3, F(000) = 1648, R = 0.0718, wR = 0.1585 and/t(MoKα) = 0.353 mm^-1. The preliminary biological tests showed that the title compound has definite insecticidal and fungicidal activities.展开更多
Use of glucagon-like peptide-1 receptor agonist or dipeptidyl peptidase 4 inhibitor has been shown to lower the incidence of Parkinson's disease in patients with diabetes mellitus.Therefore,using these two treatme...Use of glucagon-like peptide-1 receptor agonist or dipeptidyl peptidase 4 inhibitor has been shown to lower the incidence of Parkinson's disease in patients with diabetes mellitus.Therefore,using these two treatments may help treat Parkinson's disease.To further investigate the mechanisms of action of these two compounds,we established a model of Parkinson's disease by treating mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and then subcutaneously injected them with the glucagon-like peptide-1 receptor agonist exendin-4 or the dipeptidyl peptidase 4 inhibitor linagliptin.We found that both exendin-4 and linagliptin reversed motor dysfunction,glial activation,and dopaminergic neuronal death in this model.In addition,both exendin-4 and linagliptin induced microglial polarization to the anti-inflammatory M2 phenotype and reduced pro-inflammatory cytokine secretion.Moreover,in vitro experiments showed that treatment with exendin-4 and linagliptin inhibited activation of the nucleotide-binding oligomerization domain-and leucine-rich-repeat-and pyrin-domaincontaining 3/caspase-1/interleukin-1βpathway and subsequent pyroptosis by decreasing the production of reactive oxygen species.These findings suggest that exendin-4 and linagliptin exert neuroprotective effects by attenuating neuroinflammation through regulation of microglial polarization and the nucleotidebinding oligomerization domain-and leucine-rich-repeat-and pyrin-domain-containing 3/caspase-1/interleukin-1βpathway in a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Therefore,these two drugs may serve as novel anti-inflammatory treatments for Parkinson's disease.展开更多
The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neuro...The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons.Successful preclinical studies with coenzyme Q10,mitoquinone,isradipine,nilotinib,TCH346,neurturin,zonisamide,deferiprone,prasinezumab,and cinpanemab prompted clinical trials.However,these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease,despite its severe side effects after 4–6 years of chronic treatment.The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson’s disease treatment is a big problem.In our opinion,the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body,such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine,that induce a very fast,massive and expansive neurodegenerative process,which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons.The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s patients is due to(i)a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron,(ii)a neurotoxic event that is not expansive and(iii)the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons.The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome,since it(i)is generated within neuromelanin-containing dopaminergic neurons,(ii)does not cause an expansive neurotoxic effect and(iii)triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s disease.In conclusion,based on the hypothesis that the neurodegenerative process of idiopathic Parkinson’s disease corresponds to a single-neuron neurodegeneration model,we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2.It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor(erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes.展开更多
A new emissive mononuclear homoleptic Cu(Ⅰ) complex of 5-rert-butyl-3-(6-methyl-2-pyridyl)-1H-1,2,4-triazole(bmptzH),[Cu(bmptzH)2](ClO4)(1),has been synthesized by treatment of[Cu(PPh_3)2(CH3CN)2](C...A new emissive mononuclear homoleptic Cu(Ⅰ) complex of 5-rert-butyl-3-(6-methyl-2-pyridyl)-1H-1,2,4-triazole(bmptzH),[Cu(bmptzH)2](ClO4)(1),has been synthesized by treatment of[Cu(PPh_3)2(CH3CN)2](ClO4) or [Cu(CH3CN)4](ClO4) with the bmptzH ligand.It is revealed that complex 1 displays a distorted N4 tetrahedral arrangement formed by two bmptzH chelates,in which bmptzH adopts a neutral bidentate chelating coordination mode using the N atom of the pyridyl ring and the 4-N not 2-N atom of the 1,2,4-triazolyl ring.It is shown that complex 1 is highly stable and exhibits good luminescence properties in solution and solid states at room temperature due to the introduction of a methyl group at the ortho-position of the pyridyl ring.展开更多
The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating m...The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.展开更多
基金the National Natural Science Foundation of China, No. 30370499
文摘BACKGROUND: To date, a complete protein expression profile of the midbrain substantia nigra in a mouse model of chronic Parkinson's disease, induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), does not exist. In addition, there are no reports of analysis of differential protein expression. OBJECTIVE: To separate and evaluate MPTP-induced differential protein expression through the use of proteomics in the substantia nigra of a mouse model of chronic Parkinson's disease. DESIGN: Randomized controlled animal study. SETTING: Department of Neurology, the First Affiliated Hospital, Chongqing Medical University. MATERIALS: Sixteen 8-10-week old, healthy, male, C57BL mice, weighing 20-25 g, and of clean grade, were provided by the Experimental Animal Center of Chongqing Medical University. The experimental animals were disposed according to ethical criteria. MPTP was provided by Sigma Company, USA; Pdquest 2D image analysis software and gelatum/irradiance image analysis system (ChemiDoc XRS) by Bio-Rad, USA; and Voyager DE-PROMALD1-TOF-MS mass spectroscopy analyzer by AB1 Company, USA. METHODS: This study was performed in Chongqing Neurological Laboratory between November 2006 and July 2007. Mice were randomly divided into model and control groups, with 8 mice in each group. Mice in the model group were received a subcutaneous injection of MPTP (25 mg&g), twice a week, for five successive weeks, to establish a chronic Parkinson's disease model. Mice in the control group received the same volume of a subcutaneous saline injection at the same time points. Mice were sacrificed by anesthesia to rapidly obtain the midbrain for protein separation of the substantia nigra. MAIN OUTCOME MEASURES: (1) 2-ED handbook (Bio-Rad Company) was referenced for two-dimensional electrophoresis, (2) PDQUEST8,0 analytical electrophoresis pattern was adopted to evaluate differential protein expression. (3) Peptide mass finger print map and data were retrieved on http://www.prospector.ucsf.edu to compare differential substantia nigral protein expression in the two groups. RESULTS: Two-dimensional gel electrophoresis of substantia nigra tissue indicated that there were 33 differential protein expressions between the two groups. Three new proteins were evaluated, including α -enolase, which exhibited regulated expression, tumor necrosis factor ligand superfamily member 4, and cyclin-dependent kinase inhibitor 1B. CONCLUSION: There are three proteins that exhibit differential expression in the substantia nigra- α -enolase, tumor necrosis factor ligand superfamily member 4, and cyclin-dependent kinase inhibitor 1B.
基金supported by the Natural Science Foundation of Hubei Province (2006ABB016)Key Science Research Project of Hubei Provincial Department of Education (No.D200724001) the Science Research Project of Yunyang Medical College (No. 2006QDJ16)
文摘The crystal structure of the title compound ethyl 3-(4-chlorophenyl)-3,4-dihydro-6- methyl-4-oxo-2-(pyrrolidin-1-yl)furo[2,3-d]pyrimidine-5-carboxylate (C20H20ClN3O4, Mr= 401.84) has been prepared and determined by single-crystal X-ray diffraction. The crystal is of monoclinic, space group P21/n with a = 20.6215(9), b = 8.5311(4), c = 21.6886(9) A^°, β = 91.607(1)°, V = 3814.0(3)A^°^3, Z = 8, Dc = 1.400 g/cm^3, F(000) = 1680, μ = 0.233 mm^-1, R = 0.0718 and wR = 0.1545 for 6717 observed reflections with I 〉 2σ(I). X-ray diffraction analysis reveals two crystallographically independent molecules in the asymmetric unit.
基金supported by the Jiangsu Province College Students’ Practice and Innovation Training Program(No.201810323007Z)
文摘Two new Schiff bases based on 5-chloro-3-methyl-1-phenyl-1 H-pyrazole-4-carbaldehyde, namely, N-((5-chloro-3-methyl-1-phenyl-1 H-pyrazol-4-yl)methylene)-4-morpholinoaniline(Ⅲa) and N-((5-chloro-3-methyl-1-phenyl-1 H-pyrazol-4-yl)methylene)-3-fluoro-4-morpholinoaniline(Ⅲb), were synthesized and characterized by IR, LC-MS, 1 H NMR and 13 C NMR spectroscopy. Meanwhile, the three-dimensional configurations of the two title compounds were further characterized by single-crystal X-ray diffraction analyses. Both the compounds are thermodynamically stable trans-isomers. Moreover, the fluorescence properties and antioxidant activities against DPPH of the two target compounds have been investigated, and the results showed that the title compounds both have fluorescence performance and certain antioxidant activities against DPPH radical.
基金the grants from Shanghai Educational Committee, No. 03BZ03Department of Education for Doctor Foundation, No. 20040266014Shanghai Jiao Tong University Medical School for Doctor Foundation, No. BXJ0304
文摘At present, pathogenesis and mechanism of Parkinson disease (PD) are still unclear. Animal models of PD are essential tools in studies on etiology and therapy and should mimic the chronic pathological process, histological characteristics and motor behavior dysfunction. In recent years, transgenic mice have been widely utilized to study the mechanism of PD, and it has become imperative that a PD mouse model of motor behavioral dysfunction be established. OBJECTIVE: To compare the behavioral and histochemical characters of two neurotoxic mice model induced with 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1, 2, 3, 6 -tetrahydropyridine (MPTP), and a better method to mimic Parkinson disease will be found out. DESIGN: Parallel experiment. SETTING: Laboratory of Molecular Genetics, Department of Medical Genetics, Shanghai Jiao Tohg University. MATERIALS: Sixty 129Sv/C57BL6J male wild mice, SPF grade, 8 - 12 weeks old, weighing 20 - 25 g, were provided by Experimental Animal Center, Shanghai Jiao Tong University. All the surgery operation was performed according to the rules of Shanghai Jiaotong University Animal Committee. METHODS: The experiment was carried out in the Laboratory of Molecular Genetics (National Key Laboratory), Department of Medical Genetics, Shanghai Jiao Ttong University from March to August 2006. ①Thirty-two male mice were randomly divided into control group and drug treatment group with 16 mice in each group. Surgery was carried out and 6-OHDA was administrated to substantia nigra pars compacta (SNpc) and nigra-striatum pathway according to the different parameters with intoxication apparatus. Saline was injected to the other 16 mice according to the same paradigm. 1 mg/kg apomorphine was injected intraperitoneally 2 weeks later after surgery to induce the imbalanced rotation behavior for 40 minutes. ②Twenty-eight mice were randomly divided into 4 groups with 7 in each group, including low-dose, moderate-dose, high-dose groups and negative control group. Then, mice in the drug treatment group were injected intraperitoneally with 5, 10 and 15 mg/kg MPTP for 9 successive days. In addition, mice in the control group were injected with the same volume of saline for 9 days. Pole test and stride length test were utilized to detect coordinative behavioral dysfunction. Mice were sacrificed 20 days after MPTP treatment, and histochemical staining of tyrosine hydroxynase (TH) was used to observe the loss of dopaminergic neuron in SNpc. MAIN OUTCOME MEASURES: ① Success ratio of each model establishment method; ② inducible asymmetric cycle behavior test 2 weeks after 6-OHDA injection; ③behavioral dysfunction in pole test and stride length, morphological changes in brain tissue. RESULTS: Totally sixty mice were used in this experiment and 3 mice were excluded because of the hypersensitivity or the clumsy reaction in motor behavioral detection before MPTP treatment, therefore, data was analyzed with the rest 57 mice. ① Lethal ratio: Three out of 16 mice died in striatum injection group and 5 out of 16 mice died in nigro-striatal pathway group. No mouse died in MPTP treatment groups. ② Locomotor behavior: No dysfunction of locomotor was found in 6-OHDA treatment groups. However, several motor behavioral dysfunction were start to present at the 4th day of MPTP injection. ③ Asymmetric cycle behavior: No asymmetric cycle was induced successfully two weeks after 6-OHDA surgery. Mice show hypersensitive behavior 10 minutes after apomorphine injection, which lasted for about 20 minutes. ④ Pole test: From the 4^th day of MPTP treatment, mice started to display coordinate dysfunction, such as climbing down along the pole in spiral, moving slowly with hesitation. Some mice could not grab the pole and slide down along the pole at 4th day post injection. Comparing with 0 dose control group, all the threedrug treatment groups show significant different dysfunction from the 4th day to the 20th day post injection (P 〈 0.01). ⑤ stride length test: Mice's stride length decreased, when treated with MPTP, and the mice in the high dose group displayed obviously. ⑥ Dopaminergic neuron stained with TH in nigra pars compacta: The results indicated that administrated MPTP (from low dose to high dose) by intraperitoneal cause chronic lesions on the dopaminergic neuron in the SNpc. CONCLUSION: PD mice models induced with 6-OHDA show high mortality ratio and no asymmetric cycle was found after apomorphine injection. However, injection of MPTP intraperitoneally can simulate the chronic pathway of PD, typical histological changes are found and stable motor behavioral dysfunctions are displayed.
文摘Infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the right common carotid artery produced hemiparkinsonian syndrome on contralateral limbs in 5 rhesus monkeys. The hemiparkinsonian syndrome produced responded to madopar medication and the circling motion changed from toward the MPTP-treated side to away from the MPTP-treated side. Long term use of madopar developed a peak-dose dyskinesia of the face and limbs at the contralateral side. The toxic effect of MPTP was confirmed biochemically by reduction of nigrostriatal DA and histologically by degeneration of nigral neurons on the MPTP-treated side. It is concluded that this hemiparkinsonian monkey model will be of value in the elucidation of the neural mechanism underlying L-DOPA or DA agonists induced dyskinesia in Parkinson’s disease and in the search for newer methods of treatment which would produce less dyskinesia.
文摘~3H-2-deoxyglucose (2-DG) autoradiographic technique was used to study the ef feets of a monoamine-oxidase-B (MAO-B) inhibitor deprenyl and the neurotoxin Ⅰ-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) on 2-DG uptake in the mouse brain. Following MPTP intoxication, 2-DG uptake was increased in the substantia nigra and lo(?)us ceruleus. At the same time, obvious abnormal behavior of the animals was induced. In the mice pretreated with deprenyl, 2-DG uptake was similar to that of control animal. Ab normal behavior. though present, was significantly milder than in mice given MPTP alone. It is concluded that MPTP interferes with the glucose metabolism in the substantia nigra and locus ceruleus and induces remarkable abnormal behavioral syndrome of mice. These deleterious effects can be blocked by pretreatment with deprenyl.
文摘Dopamine cell bodies in the substantia nigra of the midbrain and with their terminals projecting to the neostriatum form the nigrostriatum and these dopamine neurons degenerate in Parkinson’s disease (PD). Based on metabolic and func- tional specialization of the cell bodies versus the axon terminals, the level and disposition of dopamine, its metabolites and enzymes are different in both regions and are likely to be affected differently in PD. We examined changes in the midbrain dopamine system following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to test the hypothesis that a predisposing/sensitization stage and a inducing/precipitating stage underlie PD. Pregnant mice were treated with a low dose of MPTP during gestation days 8 - 12 to model the predisposing/sensitization stage, by interrupting the fetal mid- brain dopamine system during its neurogenesis. For the inducing/precipitating stage, the 12-weeks offspring were ad- ministered MPTP. The prenatal-MPTP offspring appear normal, but midbrain dopamine, 3,4-di-hydroxy-phenyl-acetic- acid, 3-methoxytyramine, tyrosine-hydroxylase and L-aromatic-amino-acid-decarboxylase, were reduced by 49.6%, 48%, 54%, 20.9% and 25%. Postnatal-MPTP of 10, 20, 30 mg/kg administered to the prenatal-PBS vs prenatal-MPTP offspring reduced midbrain dopamine by 43.6%, 47.2%, 70.3% vs 85.4%, 89.1%, 95.2%;tyrosine-hydroxylase by 30%, 63%, 81% vs 30.7%, 70.4%, 91.4%;L-aromatic-amino-acid-decarboxylase by 0%, 2%, 40% vs 32%, 40%, 58%. The prenatal-MPTP may render the DA system sensitive by causing sub-threshold reduction of DA, its metabolites and en- zymes, enabling postnatal-MPTP to reduce dopamine above the 70% - 80% PD-inducing threshold. Thus, the study may produce a prenatal predisposing/sensitization and postnatal inducing/precipitation model of PD. It also indicates that some cases of PD may have a fetal basis, in which sub-threshold nigrostriatal impairments occur early in life and PD-symptoms are induced during aging by further insults to the dopaminergic system that would not cause PD symptoms in normal indi-viduals.
文摘Studying of charge-transfer (CT) and proton transfer interactions is essential due to their important role in many biological field and industrial applications. The current work will add more information’s about the nature of interaction between 3,5-diamino-1,2,4-triazole (DAT) and 6-methyl-1,3,5-triazine-2,4-diamine (MTDA) with 3,6-dichloro-2,5-dihydroxy-p-benzoquinone (chloranilic acid CLA) which was studied spectrophotometrically in Ethanol (EtOH) and Methanol (MeOH) solvents at different temperatures. The molecular composition of the formed complexes was studied by applying continuous variation and spectrophotometric titration methods and found to be 1:1 charge transfer complex for both Complex (DAT:CLA) and (MTDA:CLA) which are produced. Minimum-Maximum absorbance’s method has been applied to calculate the formation constant KCT and molecular extinction coefficient (ε);they recorded high values confirming high stability of the produced complexes. Oscillator strength (f), transition dipole moment (μ), ionization potential (IP) and dissociation energy (W) of the formed CT-complexes were also determined and evaluated;they showed solvent dependency. It is concluded that the formation constant (KCT) of the complexes is found to depend on the nature of both electron acceptor and donors and on the polarity of solvents.
文摘Reaction of 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile) (1) with methyl iodide afforded the 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-(methylthio)nicotinonitrile) (2). The reaction of 2 with hydrazine hydrate followed by diazotization reaction af-forded the 1,1’-(1,4-phenylenebis(3-amino-6-methyl-1H-pyrazolo[3,4-b]pyridine-4,5-diyl))bis(e-than-1-one) (3) and 1,1’-(1,4-phenylenebis(3-(chlorodiazenyl)-6-methyl-1H-pyrazolo[3,4-b]-pyridine-4,5-diyl))bis(ethan-1-one) (4) respectively. On the other hand, reaction of 4 with malononitrile, 2-cyanoethanethioamide, ethyl acetoacetate, acetyl acetone, ethyl benzoylacetate, diethylmalonate, ethyl cyanoacetate and phenacylbromide aiming to build up pyrazolotriazine or pyrazole ring on the ring system of 4. Structures of all newly synthesized heterocyclic compounds in the present study were confirmed by considering the data of IR, 1H NMR, mass spectra as well as that of elemental analyses.
文摘Sodium 3,5-bis(hydroxyimino)-1-methyl-2,4,6-trioxocyclohexanide C7H5N2NaO5 (I) has been isolated as the only product of the reaction of nitrosation of methylphloroglucinol. The structure of the titled compound has been determined from single crystal X-ray diffraction data. The hydrated C7H5N2NaO52.5H2O crystallizes in the monoclinic space group C2/c, with a(?) 16.408(3);b(?) 12.446(3);c(?) 13.716(3);(o) 126.34(3). The planar organic anion exists in a triketo-dihydroxyimino form with the C–O and C–N distances from 1.220(2) to 1.271(2)?? and from 1.292(2) to 1.293?? respectively. In the IR spectrum of I, the sharp absorption band occurred at 1681 cm-1 due to C=O stretching indicating the strong H-interactions. The correlations of theoretical (DFT-B3LYP/aug-cc-pVDZ) and experimental UV-vis absorption spectra in neutral and alkaline ethanolic solutions showed the existence of hydroxyimino-nitroso tautomerism while ionization of I.
基金supported by the National Natural Science Foundation of China,Nos.82271257(to YZ)and 82071228(to YZ)Qing Lan Project(to YZ)+1 种基金Open Competition Grant of Xuzhou Medical University(to YZ)Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.KYCX21_2705(to TS)。
文摘Microglia-mediated neuroinflammation is considered a pathological feature of Parkinson's disease.Triggering receptor expressed on myeloid cell-1(TREM-1)can amplify the inherent immune response,and crucially,regulate inflammation.In this study,we found marked elevation of serum soluble TREM-1 in patients with Parkinson's disease that positively correlated with Parkinson's disease severity and dyskinesia.In a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease,we found that microglial TREM-1 expression also increased in the substantia nigra.Further,TREM-1 knockout alleviated dyskinesia in a mouse model of Parkinson's disease and reduced dopaminergic neuronal injury.Meanwhile,TREM-1 knockout attenuated the neuroinflammatory response,dopaminergic neuronal injury,and neutrophil migration.Next,we established an in vitro 1-methyl-4-phenyl-pyridine-induced BV2 microglia model of Parkinson's disease and treated the cells with the TREM-1 inhibitory peptide LP17.We found that LP17 treatment reduced apoptosis of dopaminergic neurons and neutrophil migration.Moreover,inhibition of neutrophil TREM-1 activation diminished dopaminergic neuronal apoptosis induced by lipopolysaccharide.TREM-1 can activate the downstream CARD9/NF-κB proinflammatory pathway via interaction with SYK.These findings suggest that TREM-1 may play a key role in mediating the damage to dopaminergic neurons in Parkinson's disease by regulating the interaction between microglia and peripheral neutrophils.
基金This work was sponsored by the National Key Technologies R & D Programs (No. 2004BA308A22-8)
文摘The title compound (R)-N′-[2-(4-methoxy-6-chloro)-pyrimidyl]-N-[3-methyl-2-(4- chlorophenyl)butyryl]-urea has been synthesized, and its crystal structure and biological behaviors were studied. Crystallographic data: C17H18C12N4O3, Mr = 397.25, monoclinic, space group P21/c, a = 12.331(2), b = 14.025(3), c = 23.085(5) A, β = 99.607(4)°, Z = 8, V = 3936.2(13) A3, Dc = 1.341 g/cm^3, F(000) = 1648, R = 0.0718, wR = 0.1585 and/t(MoKα) = 0.353 mm^-1. The preliminary biological tests showed that the title compound has definite insecticidal and fungicidal activities.
基金supported by the National Natural Science Foundation of China,Nos.81771271(to JF),31800898(to WL),81430025(to JYL),and U1801681(to JYL)Key Research and Development Program of Liaoning Province,No.2020JH2/10300047(to JF)+1 种基金the Key Field Research Development Program of Guangdong Province,No.2018B030337001(to JYL)the Outstanding Scientific Fund of Shengjing Hospital,No.M0475(to JF)。
文摘Use of glucagon-like peptide-1 receptor agonist or dipeptidyl peptidase 4 inhibitor has been shown to lower the incidence of Parkinson's disease in patients with diabetes mellitus.Therefore,using these two treatments may help treat Parkinson's disease.To further investigate the mechanisms of action of these two compounds,we established a model of Parkinson's disease by treating mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and then subcutaneously injected them with the glucagon-like peptide-1 receptor agonist exendin-4 or the dipeptidyl peptidase 4 inhibitor linagliptin.We found that both exendin-4 and linagliptin reversed motor dysfunction,glial activation,and dopaminergic neuronal death in this model.In addition,both exendin-4 and linagliptin induced microglial polarization to the anti-inflammatory M2 phenotype and reduced pro-inflammatory cytokine secretion.Moreover,in vitro experiments showed that treatment with exendin-4 and linagliptin inhibited activation of the nucleotide-binding oligomerization domain-and leucine-rich-repeat-and pyrin-domaincontaining 3/caspase-1/interleukin-1βpathway and subsequent pyroptosis by decreasing the production of reactive oxygen species.These findings suggest that exendin-4 and linagliptin exert neuroprotective effects by attenuating neuroinflammation through regulation of microglial polarization and the nucleotidebinding oligomerization domain-and leucine-rich-repeat-and pyrin-domain-containing 3/caspase-1/interleukin-1βpathway in a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Therefore,these two drugs may serve as novel anti-inflammatory treatments for Parkinson's disease.
文摘The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons.Successful preclinical studies with coenzyme Q10,mitoquinone,isradipine,nilotinib,TCH346,neurturin,zonisamide,deferiprone,prasinezumab,and cinpanemab prompted clinical trials.However,these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease,despite its severe side effects after 4–6 years of chronic treatment.The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson’s disease treatment is a big problem.In our opinion,the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body,such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine,that induce a very fast,massive and expansive neurodegenerative process,which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons.The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s patients is due to(i)a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron,(ii)a neurotoxic event that is not expansive and(iii)the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons.The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome,since it(i)is generated within neuromelanin-containing dopaminergic neurons,(ii)does not cause an expansive neurotoxic effect and(iii)triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s disease.In conclusion,based on the hypothesis that the neurodegenerative process of idiopathic Parkinson’s disease corresponds to a single-neuron neurodegeneration model,we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2.It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor(erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes.
基金supported by the National Natural Science Foundation of China(Nos.21561013,21501077)the Major Program of Jiangxi Provincial Natural Science Foundation of China for Young Scholar(Nos.20143ACB21017,20161ACB21013)+1 种基金the Jiangxi Provincial Natural Science Foundation of China(Nos.20142BAB203001,20151BAB213003)the Program for Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology
文摘A new emissive mononuclear homoleptic Cu(Ⅰ) complex of 5-rert-butyl-3-(6-methyl-2-pyridyl)-1H-1,2,4-triazole(bmptzH),[Cu(bmptzH)2](ClO4)(1),has been synthesized by treatment of[Cu(PPh_3)2(CH3CN)2](ClO4) or [Cu(CH3CN)4](ClO4) with the bmptzH ligand.It is revealed that complex 1 displays a distorted N4 tetrahedral arrangement formed by two bmptzH chelates,in which bmptzH adopts a neutral bidentate chelating coordination mode using the N atom of the pyridyl ring and the 4-N not 2-N atom of the 1,2,4-triazolyl ring.It is shown that complex 1 is highly stable and exhibits good luminescence properties in solution and solid states at room temperature due to the introduction of a methyl group at the ortho-position of the pyridyl ring.
基金funded by Coordination for the Improvement of Higher Education Personnel (CAPES,Brazil-Finance Code 001,to LRB)the S?o Paulo Research Foundation(FAPESP,Brazil,project#2018/07366-4)+1 种基金The National Council for Scientific and Technological Development (CNPq,Brazil,project#303006/2018-8,to LRB)a PhD fellowship from FAPESP under Grant Agreement No 2020/02109-3。
文摘The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.