Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting a...Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect.展开更多
Lithium aluminium amide [LiAI(NHR)4] 5 obtained by treating the primary amine 4 with LiAlH4 could promote the ring opening of epoxide 2 and led to high regioselective product of racemic bis[2-(6-fluoro-2-chromanyl...Lithium aluminium amide [LiAI(NHR)4] 5 obtained by treating the primary amine 4 with LiAlH4 could promote the ring opening of epoxide 2 and led to high regioselective product of racemic bis[2-(6-fluoro-2-chromanyl)-2-hydroxyethyl]amine methanesulfonic acid salt 7.展开更多
A novel substrate for in situ synthesis of oligonucleotide was prepared by hydrolyzing microporous polyamide-6 membranes in a 0.01mol/L NaOH/(H2O-CH3OH) mixture medium. The formation of amines (NH2) on the surface was...A novel substrate for in situ synthesis of oligonucleotide was prepared by hydrolyzing microporous polyamide-6 membranes in a 0.01mol/L NaOH/(H2O-CH3OH) mixture medium. The formation of amines (NH2) on the surface was proved by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The treated membrane was applied for in situ synthesis of oligonucleotide and a single step coupling efficiency determined by ultraviolet (UV) spectra was above 98 %.展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA03A611)
文摘Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect.
基金the National 863 Program(No.2003AA323030)the National Natural Science Foundation of China(No.50272069 and No.20472090)for financial support.
文摘Lithium aluminium amide [LiAI(NHR)4] 5 obtained by treating the primary amine 4 with LiAlH4 could promote the ring opening of epoxide 2 and led to high regioselective product of racemic bis[2-(6-fluoro-2-chromanyl)-2-hydroxyethyl]amine methanesulfonic acid salt 7.
文摘A novel substrate for in situ synthesis of oligonucleotide was prepared by hydrolyzing microporous polyamide-6 membranes in a 0.01mol/L NaOH/(H2O-CH3OH) mixture medium. The formation of amines (NH2) on the surface was proved by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The treated membrane was applied for in situ synthesis of oligonucleotide and a single step coupling efficiency determined by ultraviolet (UV) spectra was above 98 %.