The application of electron donor and electron shuttle substances has a vital influence on electron transfer,thus may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane(DDT) in ana...The application of electron donor and electron shuttle substances has a vital influence on electron transfer,thus may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane(DDT) in anaerobic reaction systems.To evaluate the roles of citric acid and anthraquinone-2,6-disulfonate(AQDS) in accelerating the reductive dechlorination of DDT in Hydragric Acrisols that contain abundant iron oxide,a batch anaerobic incubation experiment was conducted in a slurry system with four treatments of(1) control,(2) citric acid,(3) AQDS,and(4) citric acid + AQDS.Results showed that DDT residues decreased by 78.93%-92.11% of the initial quantities after 20 days of incubation,and 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane(DDD) was the dominant metabolite.The application of citric acid accelerated DDT dechlorination slightly in the first 8 days,while the methanogenesis rate increased quickly,and then the acceleration effect improved after the 8th day while the methanogenesis rate decreased.The amendment by AQDS decreased the Eh value of the reaction system and accelerated microbial reduction of Fe(III) oxides to generate Fe(II),which was an efficient electron donor,thus enhancing the reductive dechlorination rate of DDT.The addition of citric acid + AQDS was most efficient in stimulating DDT dechlorination,but no significant interaction between citric acid and AQDS on DDT dechlorination was observed.The results will be of great significance for developing an efficient in situ remediation strategy for DDT-contaminated sites.展开更多
Uranium-reducing bacteria were immobilized with sodium alginate, anthraquinone-2,6-disulfonate(AQDS), and carbon nanotubes(CNTs). The effects of different AQDS-CNTs contents, U(Ⅳ) concentrations, and metal ions...Uranium-reducing bacteria were immobilized with sodium alginate, anthraquinone-2,6-disulfonate(AQDS), and carbon nanotubes(CNTs). The effects of different AQDS-CNTs contents, U(Ⅳ) concentrations, and metal ions on U(Ⅳ) reduction by immobilized beads were examined. Over 97.5% U(Ⅵ)(20 mg/L) was removed in 8 hr when the beads were added to 0.7% AQDS-CNTs, which was higher than that without AQDS-CNTs. This result may be attributed to the enhanced electron transfer by AQDS and CNTs. The reduction of U(Ⅵ) occurred at initial U(Ⅵ) concentrations of 10 to 100 mg/L and increased with increasing AQDS-CNT content from 0.1% to 1%. The presence of Fe(Ⅲ), Cu(Ⅱ) and Mn(Ⅱ)slightly increased U(Ⅵ) reduction, whereas Cr(Ⅵ), Ni(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) significantly inhibited U(Ⅵ) reduction. After eight successive incubation-washing cycles or 8 hr of retention time(HRT) for 48 hr of continuous operation, the removal efficiency of uranium was above 90% and 92%, respectively. The results indicate that the AQDS-CNT/AL/cell beads are suitable for the treatment of uranium-containing wastewaters.展开更多
The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first t...The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first time to report the impact of microbial iron plaque reduction on As mobility. Iron reduction occurred during the inoculation of iron reducing enrichment culture in the treatments with iron plaque and ferrihydrite as the electron acceptors, respectively. The Fe(II) concentration with the treatment of anthraquinone-2, 6-disulfonic acid (AQDS) and iron reducing bacteria increased much faster than the control. Arsenic released from iron plaque with the iron reduction, and a significant correlation between Fe(II) and total As in culture was observed. However, compared with control, the increasing rate of As was inhibited by iron reducing bacteria especially in the presence of AQDS. In addition, the concentrations of As(III) and As(V) in abiotic treatments were higher than those in the biotic treatments at day 30. These results indicated that both microbial and chemical reductions of iron plaque caused As release from iron plaque to aqueous phase, however, microbial iron reduction induced the formation of more crystalline iron minerals, leading to As sequestration. In addition, the presence of AQDS in solution can accelerate the iron reduction, the As release from iron plaque and subsequently the As retention in the crystalline iron mineral. Thus, our results suggested that it is possible to remediate As contaminated soils by utilizing iron reducing bacteria and AQDS.展开更多
基金supported by the National Natural Science Foundation of China (No.41201314)the Open Fund Project of State Key Laboratory of Soil and Sustainable Agriculture (No.0812201227)
文摘The application of electron donor and electron shuttle substances has a vital influence on electron transfer,thus may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane(DDT) in anaerobic reaction systems.To evaluate the roles of citric acid and anthraquinone-2,6-disulfonate(AQDS) in accelerating the reductive dechlorination of DDT in Hydragric Acrisols that contain abundant iron oxide,a batch anaerobic incubation experiment was conducted in a slurry system with four treatments of(1) control,(2) citric acid,(3) AQDS,and(4) citric acid + AQDS.Results showed that DDT residues decreased by 78.93%-92.11% of the initial quantities after 20 days of incubation,and 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane(DDD) was the dominant metabolite.The application of citric acid accelerated DDT dechlorination slightly in the first 8 days,while the methanogenesis rate increased quickly,and then the acceleration effect improved after the 8th day while the methanogenesis rate decreased.The amendment by AQDS decreased the Eh value of the reaction system and accelerated microbial reduction of Fe(III) oxides to generate Fe(II),which was an efficient electron donor,thus enhancing the reductive dechlorination rate of DDT.The addition of citric acid + AQDS was most efficient in stimulating DDT dechlorination,but no significant interaction between citric acid and AQDS on DDT dechlorination was observed.The results will be of great significance for developing an efficient in situ remediation strategy for DDT-contaminated sites.
基金supported by the China Ocean Mineral Resources Research Program (No. DY125-15-T-08)the National Natural Sciences Foundation of China (Nos. 21176026 21176242)
文摘Uranium-reducing bacteria were immobilized with sodium alginate, anthraquinone-2,6-disulfonate(AQDS), and carbon nanotubes(CNTs). The effects of different AQDS-CNTs contents, U(Ⅳ) concentrations, and metal ions on U(Ⅳ) reduction by immobilized beads were examined. Over 97.5% U(Ⅵ)(20 mg/L) was removed in 8 hr when the beads were added to 0.7% AQDS-CNTs, which was higher than that without AQDS-CNTs. This result may be attributed to the enhanced electron transfer by AQDS and CNTs. The reduction of U(Ⅵ) occurred at initial U(Ⅵ) concentrations of 10 to 100 mg/L and increased with increasing AQDS-CNT content from 0.1% to 1%. The presence of Fe(Ⅲ), Cu(Ⅱ) and Mn(Ⅱ)slightly increased U(Ⅵ) reduction, whereas Cr(Ⅵ), Ni(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) significantly inhibited U(Ⅵ) reduction. After eight successive incubation-washing cycles or 8 hr of retention time(HRT) for 48 hr of continuous operation, the removal efficiency of uranium was above 90% and 92%, respectively. The results indicate that the AQDS-CNT/AL/cell beads are suitable for the treatment of uranium-containing wastewaters.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No. KZCX1-YW-06-03)
文摘The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first time to report the impact of microbial iron plaque reduction on As mobility. Iron reduction occurred during the inoculation of iron reducing enrichment culture in the treatments with iron plaque and ferrihydrite as the electron acceptors, respectively. The Fe(II) concentration with the treatment of anthraquinone-2, 6-disulfonic acid (AQDS) and iron reducing bacteria increased much faster than the control. Arsenic released from iron plaque with the iron reduction, and a significant correlation between Fe(II) and total As in culture was observed. However, compared with control, the increasing rate of As was inhibited by iron reducing bacteria especially in the presence of AQDS. In addition, the concentrations of As(III) and As(V) in abiotic treatments were higher than those in the biotic treatments at day 30. These results indicated that both microbial and chemical reductions of iron plaque caused As release from iron plaque to aqueous phase, however, microbial iron reduction induced the formation of more crystalline iron minerals, leading to As sequestration. In addition, the presence of AQDS in solution can accelerate the iron reduction, the As release from iron plaque and subsequently the As retention in the crystalline iron mineral. Thus, our results suggested that it is possible to remediate As contaminated soils by utilizing iron reducing bacteria and AQDS.