Haynaldia villosa(2n=14,VV),a wild grass of the subtribe Triticeae,serves as potential gene resources for wheat genetic improvement.In this study,the proteome characterization during grain development of Yangmai 5 and...Haynaldia villosa(2n=14,VV),a wild grass of the subtribe Triticeae,serves as potential gene resources for wheat genetic improvement.In this study,the proteome characterization during grain development of Yangmai 5 and Yangmai 5-H.villosa 6VS/6AL translocation line was investigated by a comparative proteomic approach.Two-dimensional electrophoresis identified 81 differentially accumulated proteins(DAPs)during five grain developmental stages in wheat-H.villosa translocation line.These proteins were mainly involved in stress defense,storage protein,energy metabolism,protein metabolism and folding,carbon metabolism,nitrogen metabolism,and starch metabolism.In particular,6VS/6AL translocation led to significant upregulation of 36 DAPs and specific expression of 11 DAPs such as chitinase,thaumatin-like proteins,glutathione transferase,α-amylase inhibitor,heat shock proteins,and betaine aldehyde dehydrogenase.These proteins mainly involved in biotic and abiotic stress responses.Further analysis found that the upstream 1500 promoter regions of these stress-responsive DAP genes contained multiple high-frequency cis-acting elements related to stress defense such as abscisic acid response element ABRE,methyl jasmonate(MeJA)-response element TGACG-motif and CGTCA-motif involved in oxidative stress and antioxidant response element(ARE).RNA-seq and RT-qPCR analyses revealed the high expression of these stress-defensive DAP genes in the developing grains,particularly at the early-middle grain filling stages.Our results demonstrated that 6VS chromosome of H.villosa contains abundant stress-defensive proteins that have potential values for wheat genetic improvement.展开更多
In the present study, microdissection of 6VS and the cloning of the resistance gene analogs(RGA)from them were reported. The 6VS were microdissected with needle and 10 types of resistance gene analogs were obtained by...In the present study, microdissection of 6VS and the cloning of the resistance gene analogs(RGA)from them were reported. The 6VS were microdissected with needle and 10 types of resistance gene analogs were obtained by PCR with degenerate oligonucleotide primer designed according to resistance genes. They were designated as Hvrgak1-Hvrgak10, GenBank accession numbers are AF387113-AF387121, AY040671- AY040672. Identity among RGAs was about 10-50%, and identity with cloned R gene from plants was 5-20%. Southern hybridization analysis results showed 3 RGAs, Hvrgak2, Hvrgak4, and Hvr-gak5 were linked with wheat powdery mildew resistance. These RGAs may be used as direct entrance or probes for cloning the disease resistance genes.展开更多
基金This research was financially supported by the National Key R&D Program of China(2016YFD0100502)the National Natural Science Foundation of China(31771773)。
文摘Haynaldia villosa(2n=14,VV),a wild grass of the subtribe Triticeae,serves as potential gene resources for wheat genetic improvement.In this study,the proteome characterization during grain development of Yangmai 5 and Yangmai 5-H.villosa 6VS/6AL translocation line was investigated by a comparative proteomic approach.Two-dimensional electrophoresis identified 81 differentially accumulated proteins(DAPs)during five grain developmental stages in wheat-H.villosa translocation line.These proteins were mainly involved in stress defense,storage protein,energy metabolism,protein metabolism and folding,carbon metabolism,nitrogen metabolism,and starch metabolism.In particular,6VS/6AL translocation led to significant upregulation of 36 DAPs and specific expression of 11 DAPs such as chitinase,thaumatin-like proteins,glutathione transferase,α-amylase inhibitor,heat shock proteins,and betaine aldehyde dehydrogenase.These proteins mainly involved in biotic and abiotic stress responses.Further analysis found that the upstream 1500 promoter regions of these stress-responsive DAP genes contained multiple high-frequency cis-acting elements related to stress defense such as abscisic acid response element ABRE,methyl jasmonate(MeJA)-response element TGACG-motif and CGTCA-motif involved in oxidative stress and antioxidant response element(ARE).RNA-seq and RT-qPCR analyses revealed the high expression of these stress-defensive DAP genes in the developing grains,particularly at the early-middle grain filling stages.Our results demonstrated that 6VS chromosome of H.villosa contains abundant stress-defensive proteins that have potential values for wheat genetic improvement.
文摘In the present study, microdissection of 6VS and the cloning of the resistance gene analogs(RGA)from them were reported. The 6VS were microdissected with needle and 10 types of resistance gene analogs were obtained by PCR with degenerate oligonucleotide primer designed according to resistance genes. They were designated as Hvrgak1-Hvrgak10, GenBank accession numbers are AF387113-AF387121, AY040671- AY040672. Identity among RGAs was about 10-50%, and identity with cloned R gene from plants was 5-20%. Southern hybridization analysis results showed 3 RGAs, Hvrgak2, Hvrgak4, and Hvr-gak5 were linked with wheat powdery mildew resistance. These RGAs may be used as direct entrance or probes for cloning the disease resistance genes.