The structure evolutions of ZL109 alloy and 7050 alloy were studied in the processes of preparing raw billets by low super heat casting, remelting the raw billets, semisolid forming and heat treating components. The t...The structure evolutions of ZL109 alloy and 7050 alloy were studied in the processes of preparing raw billets by low super heat casting, remelting the raw billets, semisolid forming and heat treating components. The thin and symmetrical structure was obtained by using low super heat casting process. The eutectic that lied in the raw billet of ZL109 alloy remelted and produced liquid phase in the process of remelting, but to the 7050 alloy, the eutectic of intergranular and the pointedness of grains was remelted to make the grains more uniform and smooth. In the process of semisolid forming, the primary α and the eutectic inside the ZL109 alloy were separated partly and the grains in the 7050 alloy was conglutinated together. After heat treatment, the eutectic α grains of ZL109 traveled to primary α and shaped the white fishing net like organization; the eutectic Si grains assembled into the black massive particles. As to 7050, after heat treatment, α particles recrystallized and thin grains pattern was obtained.展开更多
The effects of quenching in different ways following solid-solution treatment on properties and precipitation behaviors of7050 alloy were investigated by transmission electron microscopy (TEM), scanning electron mic...The effects of quenching in different ways following solid-solution treatment on properties and precipitation behaviors of7050 alloy were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected areaelectron diffraction (SAED), hardness and electrical conductivity tests. Results show that after quenching in different ways, electricalconductivity of the alloy decreases rapidly in the first 48 h of natural aging. The electrical conductivity of 7050 alloy in natural agingstate is determined by the size and density of GP zones, and the size of GP zones is the main factor. After natural aging for 70 d, thesize of GP zones is 1.8-2.6 nm in matrix of the immersion quenched sample and it is 1.4-1.8 nm in matrix of both water mist andforced air quenched samples. After natural and artificial peak aging, the hardness of the water mist quenched sample is HV 193.6 andits electrical conductivity is 30.5% (IACS) which are both higher than those of the immersion quenched sample. Therefore, watermist quenching is an ideal quenching method for 7050 alloy sheets after solid-solution treatment.展开更多
The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)wa...The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)was investigated.The results demonstrated that the fatigue life of SP/MRR samples is longer than that of MRR/SP.On the plane 150μm below the surface.The grains with high angle grain boundary account for 71.5%and 34.3%for MRR/SP and SP/MRR samples,respectively.The crack propagation path of the MRR/SP is transgranular and intergranular,and it is intergranular for the MRR/SP.Multitudinous fatigue striations and some voids appeared at the fracture during the stable crack propagation stage.However,fatigue striations for SP/MRR are with smaller spacing,fewer holes,and smaller size under SP/MRR compared with fatigue fracture of MRR/SP.The differences in fatigue properties and fracture characteristics of the NZ are related to the microstructure after the two combined surface modifications.展开更多
Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show t...Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution.展开更多
The exfoliation corrosion (EFC) behavior of 7050-T6 aluminum alloy treated with various quench transfer time after solution heat treatment was investigated by standard EFC immersion tests, strength loss measurements...The exfoliation corrosion (EFC) behavior of 7050-T6 aluminum alloy treated with various quench transfer time after solution heat treatment was investigated by standard EFC immersion tests, strength loss measurements after EFC tests and electrochemical impedance spectroscope (EIS) technique. The results showed that EFC resistance of the alloy decreased with increasing quench transfer time. Backscattered electron scanning electron microscope (SEM) together with transmission electron microscope (TEM) observations revealed that the coverage ratio and microstructure of precipitates at grain boundary area are the most important factors which influence the EFC susceptibility of the alloy, while precipitate-free zone (PFZ) near grain boundary has no or only a minor effect on it. In addition, galvanostatic measurements of the alloy present a good correlation between EFC resistance and transients in potential. The cumulated number of transients in potential can be used to evaluate EFC resistance of the alloy.展开更多
The corrosion anisotropy of 7050-T7451 A1 alloy thick plate in NaCI solution was investigated by immersion tests, slow strain rate testing (SSRT) technique, potentiodynamic and anode polarization measurements, optic...The corrosion anisotropy of 7050-T7451 A1 alloy thick plate in NaCI solution was investigated by immersion tests, slow strain rate testing (SSRT) technique, potentiodynamic and anode polarization measurements, optical microscropy (OM) and scanning electron microscopy (SEM) observations. The results show that the thick plate exhibits severe corrosion anisotropy due to the microstructure anisotropy. The observations of immersion surfaces together with the analysis of polarization curves reveal that the differences of the corrosion morphologies on various sections in this material are mainly related to the area fraction of the remnant second phase, and higher area fraction displays worst corrosion resistance. The stress corrosion cracking (SCC) susceptibility of different directions relative to the rolling direction is assessed by SSRT technique, ranked in the order: S direction 〉 L direction 〉 T direction. The result show that the smaller the grain aspect ratio, the better the corrosion resistance to SCC.展开更多
Hot compression of 7050 aluminum alloy was performed on Gleeble 1500D thermo-mechanical simulator at 350 ℃ and 450 ℃ with a constant strain rate of 0.1 s-1 to different nominal strains of 0.1, 0.3 and 0.7. Microstru...Hot compression of 7050 aluminum alloy was performed on Gleeble 1500D thermo-mechanical simulator at 350 ℃ and 450 ℃ with a constant strain rate of 0.1 s-1 to different nominal strains of 0.1, 0.3 and 0.7. Microstructures of 7050 alloy under various compression conditions were observed by TEM to investigate the microstructure evolution process of the alloy deformed at various temperatures. The microstructure evolves from dislocation tangles to cell structure and subgrain structure when being deformed at 350 ℃, of which dynamic recovery is the softening mechanism. However, continuous dynamic recrystallization (DRX) occurs during hot deformation at 450 ℃, in which the main nucleation mechanisms of DRX are subgrain growth and subgrain coalescence rather than particle-simulated nucleation (PSN).展开更多
With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting...With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.展开更多
The effects of the retrogression heating rate(340℃/min,57℃/min,4.3℃/min)on the microstructures and mechanical properties of aluminum alloy 7050 were investigated by means of hardness measurement,tensile properties ...The effects of the retrogression heating rate(340℃/min,57℃/min,4.3℃/min)on the microstructures and mechanical properties of aluminum alloy 7050 were investigated by means of hardness measurement,tensile properties testing,differential scanning calorimetry(DSC)and transmission electron microscopy(TEM).The results show that the retrogression heating rate significantly affects the microstructures and mechanical properties of the alloys treated by retrogression and re-aging(RRA)process, and it is found that the medium rate(57℃/min)leads to the highest mechanical properties.The strengthening phases in the matrix are mainly the fine dispersed η′precipitates and GP zones,and the grain boundary precipitates are coarse and discontinuous η phases.展开更多
A numerical approach for process optimization and microstructure evolution of lager-sized forging of aluminium alloy 7050 was proposed, which combined a commercial FEM code Deform 3D with empirical models. To obtain t...A numerical approach for process optimization and microstructure evolution of lager-sized forging of aluminium alloy 7050 was proposed, which combined a commercial FEM code Deform 3D with empirical models. To obtain the parameters of empirical constitutive equation and dynamic recrystallization models for aluminium alloy 7050, the isothermal compression tests of 7050 samples were performed on Gleeble-1500 thermo-simulation machine in the temperature range of 250-450 ℃ and strain rate of 0.01-10 s-1, and the metallograph analysis of the samples were carried out on a Leica DMIRM image analyzer. The simulation results show that the dynamic recrystallization in the central area of the billet occurs more easily than that on the edge. Repetitious upsetting and stretching processes make the billet deform adequately. Among several forging processes e.g. upsetting, stretching, rounding and flatting, the stretching process is the most effective way to increase the effective strain and refine the microstructure of the billet. As the forging steps increase, the effective strain rises significantly and the average grain size reduces sharply. Recrystallized volume fractions in most parts of the final forging piece reach 100% and the average grain size reduces to 10 μm from initial value of 90 μm.展开更多
The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy...The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.展开更多
The passive film-induced stress and the susceptibility to SCC of 7050 aluminum alloy in 3.5%sodium chloride solution at various pH values were investigated by slow strain rate testing(SSRT) and flowing stress differ...The passive film-induced stress and the susceptibility to SCC of 7050 aluminum alloy in 3.5%sodium chloride solution at various pH values were investigated by slow strain rate testing(SSRT) and flowing stress differential method.The results showed that the passive film-induced stress and the susceptibility to SCC decreased with increasing pH values when pH≤7,while they increased with increasing pH values when pH7.However,the corrosion type was interpreted as exfoliation corrosion when pH=l and 14,and there was no film formed on the surface of the specimens.The whole variation plots of film-induced stress and the SCC susceptibility with pH values were both presented as a valley shape.The symbol and amount of the film-induced stress were related to the compositions of the passive film,which were analyzed using X-ray photoelectron spectroscopy(XPS).展开更多
Extrusion experiments with different filling contents at the temperature of 440 ℃ were conducted for solution treated 7050 aluminum alloy.The microstructure of typical regions with different filler contents were desc...Extrusion experiments with different filling contents at the temperature of 440 ℃ were conducted for solution treated 7050 aluminum alloy.The microstructure of typical regions with different filler contents were described qualitatively and characterized quantitatively by electron backscattered diffraction technique(EBSD) and TEM.Fraction of deformed structure decrease continuously since ε=0.72.Second phase particles distribute dispersively and interact with dislocations when ε=0.66,which delays the occurrence of DRX.As the strain increases,particles dissolve into the matrix,and their number reduces rapidly.The influence of particles on dislocation accumulation is impaired,so dislocations accumulate on the subgrain boundaries continuously,and lead to the transformation of subgrain boundaries into high angle grain boundaries(HAGBs).The continuous dynamic recrystallization(CDRX) occurrs at the strain of 0.81~0.85.At ε=0.92,CDRX convert rapidly with the increase of HAGBs fraction.But the size of CDRX grains is deduced to be minimum 3.3 μm by theoretical analysis,and it is obtained from experimental result that the maximal size of CDRX is 5.3 μm.展开更多
The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystall...The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystallization (DRX) for aluminium alloy 7050. The material constants in CA models, including dislocation density, nucleation rate and grain growth, were determined by the isothermal compress tests on Gleeble 1500 machine. The model of dislocation density was obtained by linear regression method based on the experimental results. The influences of the deformation parameters on the percentage of DRX and the mean grain size for aluminium alloy 7050 were investigated in details by means of CA simulation. The simulation results show that, as temperature increases from 350 to 450 ℃ at a strain rate of 0.01 s?1, the percentage of DRX also increases greatly and the mean grain size decreases from 50 to 39.3 μm. The mean size of the recrystallied grains (R-grains) mainly depends on the Zener-Hollomon parameter. To obtain fine grain, the desired deformation temperature is determined from 400 to 450 ℃.展开更多
Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long s...Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long stringer was analyzed based on the power spectral density of road transport acceleration.The residual stress relaxation experiment of aluminum alloy 7050-T7451 under different equivalent stress levels was designed and carried out.According to the amount of residual stress relaxation in the experiment,an analytical model was established with the equivalent stress level coefficient.The deflection range of long stringer was evaluated under different damping ratios.The results show that when the equivalent stress exceeds 0.8σ0.2,the residual stress relaxation of the thin-walled samples occurs.The residual stress relaxation increases linearly with the equivalent stress,which is logarithmically related to the loading cycle.The deformation caused by residual stress relaxation of the long stringer is proportional to the square of the length and the bending moment caused by stress rebalance,and inversely proportional to the moment of inertia of the structure.As the damping ratio decreases from 0.03 to 0.01,the total deflection of the long stringer increases from 0 to above 1.55 mm.展开更多
The microstructure of 7050 AI alloy in T74 condition has been studied by means of transmis- sion electron microscopy and dynamical diffraction simulation.It was found that the alloy studied contains mainly AI3Zr super...The microstructure of 7050 AI alloy in T74 condition has been studied by means of transmis- sion electron microscopy and dynamical diffraction simulation.It was found that the alloy studied contains mainly AI3Zr superlattice phase,η′-phase and Al_7Cu_2Fe constituent phase. The η′-phase has an orthorombic crystal structure with a=0.492 nm,b=0.852 nm and c=0.701 nm.The orientation relationship between the η′-phase and matrix was determined as(101)_m∥(010)_(η′)[111]_m∥[001]_(η′)展开更多
3 mm thick 7050-T7451 aluminum alloy joint was obtained by friction stir welding, and the two-step aging treatment was performed at 121 ℃ × 5 h + 163 ℃× 27 h after welding. Microstructure, hardness profile...3 mm thick 7050-T7451 aluminum alloy joint was obtained by friction stir welding, and the two-step aging treatment was performed at 121 ℃ × 5 h + 163 ℃× 27 h after welding. Microstructure, hardness profiles and stress corrosion sensitivity of the joint were measured and studied. The results indicate that through the two-step aging, the grain size is coarsened, the age-hardening precipitates and PFZ become wider at the same time, which results in the discontinuous grain boundary;the microhardness of the FSW joints decreased, but the heat-affected zone significantly narrowed, which increased the uniformity of the microhardness of the FSW joints;and the two-stage aging effectively reduced the stress corrosion sensitivity of the FSW joints. The joints with aging treatment were not broken after 60 days,however all the joints without aging treatment were broken within 1 day.展开更多
6009/7050 alloy bimetal slab was prepared by a direct-chill (DC) casting process. Homogenizing annealing, hot rolling and T6 treatment were successively performed and their effects on microstructure and properties of ...6009/7050 alloy bimetal slab was prepared by a direct-chill (DC) casting process. Homogenizing annealing, hot rolling and T6 treatment were successively performed and their effects on microstructure and properties of the slab were studied. The results reveal that the average diffusion layer thickness of as-cast slab, determined by interdiffusion of elements Zn, Cu, Mg and Si, was about 400 μm. Excellent metallurgical bonding was achieved because all tensile samples fractured on the softer 6009 alloy side after homogenizing annealing. After homogenizing annealing plus rolling, the average diffusion layer thickness decreased to 100 μm, while the network structure of 7050 alloy side transformed to dispersive nubby structure. Furthermore, subsequent T6 treatment resulted in diffusion layer thickness up to 200 μm and an obvious increase of the Vickers hardness for both 7050 and 6009 sides. The layered structure of the as-cast 6009/7050 bimetal is retained after hot rolling and T6 treatment.展开更多
Thermo-plasticity of homogenized 7050 aluminum ingot was investigated by instantaneous tensile tests conducted at different temperatures. The results show that, with the increase of testing temperatures, the strength ...Thermo-plasticity of homogenized 7050 aluminum ingot was investigated by instantaneous tensile tests conducted at different temperatures. The results show that, with the increase of testing temperatures, the strength decreases, and the plasticity increases firstly and then decreases in homogenized 7050 ingot. When the studied alloy is deformed between 380℃ and 420℃, the deformation resistance is lower and plasticity is better. And the actual heating temperature for ingot before hot extrusion should be controlled between 360 ~C and 400 ~C. At low tensile temperatures, the deformation structure is mainly composed of dislocation substructure. With the increase of testing temperatures, transgranular fracture transforms into intergranular fracture progressively during deformation. At high tensile temperatures, the grain boundaries are weakened, deformation is concentrated at the grain boundaries and the re-orientation of equilibrium phases at grain boundaries appears.展开更多
Micro porosity in aluminum alloys may contribute to fatigue life degradation, which can largely limit the application of alloys. Therefore, the fatigue life of a commercial 7050-T7451 thick plate and an experimental p...Micro porosity in aluminum alloys may contribute to fatigue life degradation, which can largely limit the application of alloys. Therefore, the fatigue life of a commercial 7050-T7451 thick plate and an experimental plate with different porosities was compared in this study. The X-ray computed tomography(XCT) was utilized to characterize the size, number density and spatial distribution of porosity inside various samples, and the fracture surface of fatigued specimens was compared by using scanning electron microscope(SEM). The results showed that the fatigue cracks prefer to initiate from constituent particles in the commercial alloy. Whereas the micro porosity is the predominant site for crack nucleation and subsequent failure in the experimental one. The presence of micro porosity in experimental7050-T7451 thick plate may reduce the fatigue life by an order of magnitude or more compared with the defect-free alloy. The pores close to sample surface are the main fatigue crack initiation site, among which larger and deeper pore leads to a shorter fatigue life. The crack initiation is also affected by the pore geometry and direction. Besides, the overall porosity inside the bulk can affect the crack propagation during fatigue tests.展开更多
文摘The structure evolutions of ZL109 alloy and 7050 alloy were studied in the processes of preparing raw billets by low super heat casting, remelting the raw billets, semisolid forming and heat treating components. The thin and symmetrical structure was obtained by using low super heat casting process. The eutectic that lied in the raw billet of ZL109 alloy remelted and produced liquid phase in the process of remelting, but to the 7050 alloy, the eutectic of intergranular and the pointedness of grains was remelted to make the grains more uniform and smooth. In the process of semisolid forming, the primary α and the eutectic inside the ZL109 alloy were separated partly and the grains in the 7050 alloy was conglutinated together. After heat treatment, the eutectic α grains of ZL109 traveled to primary α and shaped the white fishing net like organization; the eutectic Si grains assembled into the black massive particles. As to 7050, after heat treatment, α particles recrystallized and thin grains pattern was obtained.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51371045)supported by the National Natural Science Foundation of China
文摘The effects of quenching in different ways following solid-solution treatment on properties and precipitation behaviors of7050 alloy were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected areaelectron diffraction (SAED), hardness and electrical conductivity tests. Results show that after quenching in different ways, electricalconductivity of the alloy decreases rapidly in the first 48 h of natural aging. The electrical conductivity of 7050 alloy in natural agingstate is determined by the size and density of GP zones, and the size of GP zones is the main factor. After natural aging for 70 d, thesize of GP zones is 1.8-2.6 nm in matrix of the immersion quenched sample and it is 1.4-1.8 nm in matrix of both water mist andforced air quenched samples. After natural and artificial peak aging, the hardness of the water mist quenched sample is HV 193.6 andits electrical conductivity is 30.5% (IACS) which are both higher than those of the immersion quenched sample. Therefore, watermist quenching is an ideal quenching method for 7050 alloy sheets after solid-solution treatment.
基金supported by the National Natural Science Foundation of China(Grants 51865028)the Gansu Provincial Science and Technology Planning Project(Grant No.20YF8GA056).
文摘The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)was investigated.The results demonstrated that the fatigue life of SP/MRR samples is longer than that of MRR/SP.On the plane 150μm below the surface.The grains with high angle grain boundary account for 71.5%and 34.3%for MRR/SP and SP/MRR samples,respectively.The crack propagation path of the MRR/SP is transgranular and intergranular,and it is intergranular for the MRR/SP.Multitudinous fatigue striations and some voids appeared at the fracture during the stable crack propagation stage.However,fatigue striations for SP/MRR are with smaller spacing,fewer holes,and smaller size under SP/MRR compared with fatigue fracture of MRR/SP.The differences in fatigue properties and fracture characteristics of the NZ are related to the microstructure after the two combined surface modifications.
基金Project(2012CB619505)supported by the National Basic Research Program of ChinaProject(NCET-13-0370)supported by the Program for New Century Excellent Talents in Universities of China
文摘Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution.
基金Project(2012CB619502)supported by the National Basic Research Program of China
文摘The exfoliation corrosion (EFC) behavior of 7050-T6 aluminum alloy treated with various quench transfer time after solution heat treatment was investigated by standard EFC immersion tests, strength loss measurements after EFC tests and electrochemical impedance spectroscope (EIS) technique. The results showed that EFC resistance of the alloy decreased with increasing quench transfer time. Backscattered electron scanning electron microscope (SEM) together with transmission electron microscope (TEM) observations revealed that the coverage ratio and microstructure of precipitates at grain boundary area are the most important factors which influence the EFC susceptibility of the alloy, while precipitate-free zone (PFZ) near grain boundary has no or only a minor effect on it. In addition, galvanostatic measurements of the alloy present a good correlation between EFC resistance and transients in potential. The cumulated number of transients in potential can be used to evaluate EFC resistance of the alloy.
基金Project(2012CB619502)supported by the National Basic Research Program of China
文摘The corrosion anisotropy of 7050-T7451 A1 alloy thick plate in NaCI solution was investigated by immersion tests, slow strain rate testing (SSRT) technique, potentiodynamic and anode polarization measurements, optical microscropy (OM) and scanning electron microscopy (SEM) observations. The results show that the thick plate exhibits severe corrosion anisotropy due to the microstructure anisotropy. The observations of immersion surfaces together with the analysis of polarization curves reveal that the differences of the corrosion morphologies on various sections in this material are mainly related to the area fraction of the remnant second phase, and higher area fraction displays worst corrosion resistance. The stress corrosion cracking (SCC) susceptibility of different directions relative to the rolling direction is assessed by SSRT technique, ranked in the order: S direction 〉 L direction 〉 T direction. The result show that the smaller the grain aspect ratio, the better the corrosion resistance to SCC.
文摘Hot compression of 7050 aluminum alloy was performed on Gleeble 1500D thermo-mechanical simulator at 350 ℃ and 450 ℃ with a constant strain rate of 0.1 s-1 to different nominal strains of 0.1, 0.3 and 0.7. Microstructures of 7050 alloy under various compression conditions were observed by TEM to investigate the microstructure evolution process of the alloy deformed at various temperatures. The microstructure evolves from dislocation tangles to cell structure and subgrain structure when being deformed at 350 ℃, of which dynamic recovery is the softening mechanism. However, continuous dynamic recrystallization (DRX) occurs during hot deformation at 450 ℃, in which the main nucleation mechanisms of DRX are subgrain growth and subgrain coalescence rather than particle-simulated nucleation (PSN).
基金Project(2010CB731700) supported by the National Basic Research Program of China
文摘With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.
基金Project(2005CB623700) supported by the National Basic Research Program of China
文摘The effects of the retrogression heating rate(340℃/min,57℃/min,4.3℃/min)on the microstructures and mechanical properties of aluminum alloy 7050 were investigated by means of hardness measurement,tensile properties testing,differential scanning calorimetry(DSC)and transmission electron microscopy(TEM).The results show that the retrogression heating rate significantly affects the microstructures and mechanical properties of the alloys treated by retrogression and re-aging(RRA)process, and it is found that the medium rate(57℃/min)leads to the highest mechanical properties.The strengthening phases in the matrix are mainly the fine dispersed η′precipitates and GP zones,and the grain boundary precipitates are coarse and discontinuous η phases.
基金Project(2005CB724105) supported by the National Basic Research Program of ChinaProject (IRT0549) supported by the Program for Changjiang Scholars and Innovative Research Team in University
文摘A numerical approach for process optimization and microstructure evolution of lager-sized forging of aluminium alloy 7050 was proposed, which combined a commercial FEM code Deform 3D with empirical models. To obtain the parameters of empirical constitutive equation and dynamic recrystallization models for aluminium alloy 7050, the isothermal compression tests of 7050 samples were performed on Gleeble-1500 thermo-simulation machine in the temperature range of 250-450 ℃ and strain rate of 0.01-10 s-1, and the metallograph analysis of the samples were carried out on a Leica DMIRM image analyzer. The simulation results show that the dynamic recrystallization in the central area of the billet occurs more easily than that on the edge. Repetitious upsetting and stretching processes make the billet deform adequately. Among several forging processes e.g. upsetting, stretching, rounding and flatting, the stretching process is the most effective way to increase the effective strain and refine the microstructure of the billet. As the forging steps increase, the effective strain rises significantly and the average grain size reduces sharply. Recrystallized volume fractions in most parts of the final forging piece reach 100% and the average grain size reduces to 10 μm from initial value of 90 μm.
基金Project(2012ZX04010-8)supported by National Key Technology R&D Program of China
文摘The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.
基金Funded by the National Natural Science Foundation of China(No.51371039)
文摘The passive film-induced stress and the susceptibility to SCC of 7050 aluminum alloy in 3.5%sodium chloride solution at various pH values were investigated by slow strain rate testing(SSRT) and flowing stress differential method.The results showed that the passive film-induced stress and the susceptibility to SCC decreased with increasing pH values when pH≤7,while they increased with increasing pH values when pH7.However,the corrosion type was interpreted as exfoliation corrosion when pH=l and 14,and there was no film formed on the surface of the specimens.The whole variation plots of film-induced stress and the SCC susceptibility with pH values were both presented as a valley shape.The symbol and amount of the film-induced stress were related to the compositions of the passive film,which were analyzed using X-ray photoelectron spectroscopy(XPS).
文摘Extrusion experiments with different filling contents at the temperature of 440 ℃ were conducted for solution treated 7050 aluminum alloy.The microstructure of typical regions with different filler contents were described qualitatively and characterized quantitatively by electron backscattered diffraction technique(EBSD) and TEM.Fraction of deformed structure decrease continuously since ε=0.72.Second phase particles distribute dispersively and interact with dislocations when ε=0.66,which delays the occurrence of DRX.As the strain increases,particles dissolve into the matrix,and their number reduces rapidly.The influence of particles on dislocation accumulation is impaired,so dislocations accumulate on the subgrain boundaries continuously,and lead to the transformation of subgrain boundaries into high angle grain boundaries(HAGBs).The continuous dynamic recrystallization(CDRX) occurrs at the strain of 0.81~0.85.At ε=0.92,CDRX convert rapidly with the increase of HAGBs fraction.But the size of CDRX grains is deduced to be minimum 3.3 μm by theoretical analysis,and it is obtained from experimental result that the maximal size of CDRX is 5.3 μm.
基金Project(2005CB724105) supported by the Major State Basic Research Program of ChinaProject(IRT0549) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘The prediction of microstructure evolution plays an important role in the design of forging process. In the present work, the cellular automaton (CA) program was developed to simulate the process of dynamic recrystallization (DRX) for aluminium alloy 7050. The material constants in CA models, including dislocation density, nucleation rate and grain growth, were determined by the isothermal compress tests on Gleeble 1500 machine. The model of dislocation density was obtained by linear regression method based on the experimental results. The influences of the deformation parameters on the percentage of DRX and the mean grain size for aluminium alloy 7050 were investigated in details by means of CA simulation. The simulation results show that, as temperature increases from 350 to 450 ℃ at a strain rate of 0.01 s?1, the percentage of DRX also increases greatly and the mean grain size decreases from 50 to 39.3 μm. The mean size of the recrystallied grains (R-grains) mainly depends on the Zener-Hollomon parameter. To obtain fine grain, the desired deformation temperature is determined from 400 to 450 ℃.
基金Supported by National Natural Science Foundation of China(Grant No.51405226).
文摘Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long stringer was analyzed based on the power spectral density of road transport acceleration.The residual stress relaxation experiment of aluminum alloy 7050-T7451 under different equivalent stress levels was designed and carried out.According to the amount of residual stress relaxation in the experiment,an analytical model was established with the equivalent stress level coefficient.The deflection range of long stringer was evaluated under different damping ratios.The results show that when the equivalent stress exceeds 0.8σ0.2,the residual stress relaxation of the thin-walled samples occurs.The residual stress relaxation increases linearly with the equivalent stress,which is logarithmically related to the loading cycle.The deformation caused by residual stress relaxation of the long stringer is proportional to the square of the length and the bending moment caused by stress rebalance,and inversely proportional to the moment of inertia of the structure.As the damping ratio decreases from 0.03 to 0.01,the total deflection of the long stringer increases from 0 to above 1.55 mm.
文摘The microstructure of 7050 AI alloy in T74 condition has been studied by means of transmis- sion electron microscopy and dynamical diffraction simulation.It was found that the alloy studied contains mainly AI3Zr superlattice phase,η′-phase and Al_7Cu_2Fe constituent phase. The η′-phase has an orthorombic crystal structure with a=0.492 nm,b=0.852 nm and c=0.701 nm.The orientation relationship between the η′-phase and matrix was determined as(101)_m∥(010)_(η′)[111]_m∥[001]_(η′)
基金National Natural Science Foundation of China (51774047)Beijing Great Wall Scholars Training Program(CIT&TCD20170309)。
文摘3 mm thick 7050-T7451 aluminum alloy joint was obtained by friction stir welding, and the two-step aging treatment was performed at 121 ℃ × 5 h + 163 ℃× 27 h after welding. Microstructure, hardness profiles and stress corrosion sensitivity of the joint were measured and studied. The results indicate that through the two-step aging, the grain size is coarsened, the age-hardening precipitates and PFZ become wider at the same time, which results in the discontinuous grain boundary;the microhardness of the FSW joints decreased, but the heat-affected zone significantly narrowed, which increased the uniformity of the microhardness of the FSW joints;and the two-stage aging effectively reduced the stress corrosion sensitivity of the FSW joints. The joints with aging treatment were not broken after 60 days,however all the joints without aging treatment were broken within 1 day.
基金Project (51375070) supported by the National Natural Science Foundation of China
文摘6009/7050 alloy bimetal slab was prepared by a direct-chill (DC) casting process. Homogenizing annealing, hot rolling and T6 treatment were successively performed and their effects on microstructure and properties of the slab were studied. The results reveal that the average diffusion layer thickness of as-cast slab, determined by interdiffusion of elements Zn, Cu, Mg and Si, was about 400 μm. Excellent metallurgical bonding was achieved because all tensile samples fractured on the softer 6009 alloy side after homogenizing annealing. After homogenizing annealing plus rolling, the average diffusion layer thickness decreased to 100 μm, while the network structure of 7050 alloy side transformed to dispersive nubby structure. Furthermore, subsequent T6 treatment resulted in diffusion layer thickness up to 200 μm and an obvious increase of the Vickers hardness for both 7050 and 6009 sides. The layered structure of the as-cast 6009/7050 bimetal is retained after hot rolling and T6 treatment.
基金Project(JPPT-115-2-948) supported by the National Civilian Matched Program of China
文摘Thermo-plasticity of homogenized 7050 aluminum ingot was investigated by instantaneous tensile tests conducted at different temperatures. The results show that, with the increase of testing temperatures, the strength decreases, and the plasticity increases firstly and then decreases in homogenized 7050 ingot. When the studied alloy is deformed between 380℃ and 420℃, the deformation resistance is lower and plasticity is better. And the actual heating temperature for ingot before hot extrusion should be controlled between 360 ~C and 400 ~C. At low tensile temperatures, the deformation structure is mainly composed of dislocation substructure. With the increase of testing temperatures, transgranular fracture transforms into intergranular fracture progressively during deformation. At high tensile temperatures, the grain boundaries are weakened, deformation is concentrated at the grain boundaries and the re-orientation of equilibrium phases at grain boundaries appears.
基金Project(2019KJ2X08-4) supported by Chinalco Technology Development Project Fund,China。
文摘Micro porosity in aluminum alloys may contribute to fatigue life degradation, which can largely limit the application of alloys. Therefore, the fatigue life of a commercial 7050-T7451 thick plate and an experimental plate with different porosities was compared in this study. The X-ray computed tomography(XCT) was utilized to characterize the size, number density and spatial distribution of porosity inside various samples, and the fracture surface of fatigued specimens was compared by using scanning electron microscope(SEM). The results showed that the fatigue cracks prefer to initiate from constituent particles in the commercial alloy. Whereas the micro porosity is the predominant site for crack nucleation and subsequent failure in the experimental one. The presence of micro porosity in experimental7050-T7451 thick plate may reduce the fatigue life by an order of magnitude or more compared with the defect-free alloy. The pores close to sample surface are the main fatigue crack initiation site, among which larger and deeper pore leads to a shorter fatigue life. The crack initiation is also affected by the pore geometry and direction. Besides, the overall porosity inside the bulk can affect the crack propagation during fatigue tests.