The thermodynamics and kinetics of the reaction between Titanium powder and 7075 aluminum alloy were investigated to assess the possibility of preparing TiA1J7075 composites by in-situ synthesis method. Results show t...The thermodynamics and kinetics of the reaction between Titanium powder and 7075 aluminum alloy were investigated to assess the possibility of preparing TiA1J7075 composites by in-situ synthesis method. Results show that Ti and A1 melt can form TiA13 spontaneously, which is considered as a reinforced phase of the matrix. Measurements such as XRD, SEM, and EDX were performed to characterize the as-synthesized samples, and results confirmed the formation of TiA13 in aluminum matrix composites. The reactive kinetics was controlled by three main factors, which are the system temperature, particle size of Ti, and the thickness of external diffusion layer.展开更多
In the present study, in-situ Ti B2 particle-reinforced 7075 aluminum alloy was produced by adding a mixture of K2 Ti F6 and KBF4 to the molten base alloy. The effects of the addition of 4.5wt.% and 9wt.%Ti B2 on the ...In the present study, in-situ Ti B2 particle-reinforced 7075 aluminum alloy was produced by adding a mixture of K2 Ti F6 and KBF4 to the molten base alloy. The effects of the addition of 4.5wt.% and 9wt.%Ti B2 on the apparent viscosity and microstructure were investigated. The results showed that adding Ti B2 is effective for optimizing primary α-Al, but compared with the 4.5wt.%Ti B2/7075 composite, the addition of 9wt.%Ti B2 had no further significant refinement role in the 9wt.%Ti B2/7075 composite due to particle aggregation. The viscosities of semi-solid 7075 alloy and Ti B2/7075 composite slurries increased with an increase in solid fraction, but decreased with an increase in shear rate. The viscosity of 4.5wt.% Ti B2/7075 was the lowest among the three samples, and that of 7075 alloy was the highest under the same conditions. The primary α-Al grain size was decreased, and the dendritic grains grew into spherical shapes after shearing. Based on the experimental results, viscosity models of the semi-solid 7075 alloy and 4.5wt.% and 9wt.%Ti B2/7075 composites were formulated. According to the simulation results, the shrinkage porosity of the 4.5wt.%Ti B2/7075 wheel was lower than those of the 7075 alloy and 9wt.%Ti B2/7075 wheels.展开更多
Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (abo...Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (about 100 nm in size) were precipitated nearby the grain boundaries where the TiB2 particles exist. After deformation at 300 degreesC, some of the large precipitates and all the small precipitates in these area dissolved into the matrix, meanwhile, fine precipitates were formed in grains. After deformation at 450 degreesC, all the precipitates in the annealed composite dissolved into the matrix, and new phases were precipitated in grains. The dissolution of the large fiber-like precipitate makes the saturation level of the matrix increased and leads to an increased solution hardening and natural aging, which contribute much to the hardening effect.展开更多
Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu...Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties.展开更多
The 7075 aluminium matrix composite reinforced with nano-sized Si C particles was fabricated by ultrasonic assisted semisolid stirring method. The compression mechanical behaviour of the fabricated composite in semiso...The 7075 aluminium matrix composite reinforced with nano-sized Si C particles was fabricated by ultrasonic assisted semisolid stirring method. The compression mechanical behaviour of the fabricated composite in semisolid state was investigated. The results show that the microstructure of the composite before semisolid compression consists of fine and spheroidal solid grains surrounded by liquid phase.Semisolid compression led to a nonuniform plastic deformation of solid grains. A slight plastic deformation occurred in the locations near the free surface due to the dependence of deformation on liquid flow and flow of liquid incorporating solid grains. However, obvious plastic deformation occurred in the central location and location contacting to die due to the contribution of plastic deformation of solid grains.The true stress–strain curve of the sample compressed at 500 °C consists of rapid increase of true stress and steady stage. However, rapid increase of true stress and decrease of true stress and steady stage are involved in the true stress–strain curves of the samples compressed at 550, 560, 570, 580 and 590 °C.The true stress–strain curve at 600 °C is similar to that at 500 °C. Apparent viscosity decreases with an increase of shear rate, indicating a shear thinning occurrence. When soaking time increases from 5 min to 15 min, the peak stress and steady stress decrease significantly. A further increase of the soaking time led to a slight change. Peak stress and steady stress increase with increasing volume fraction of Si C particles. A sudden increase or decrease of compression velocity led to a significant increase or decrease of the steady stress. The destruction of the samples compressed at solid state temperature mainly depends on cracks parallel to compression direction. However, the destruction forms of the samples compressed at semisolid temperatures consist of cracks parallel to compression direction and partial collapse. Increasing soaking time led to an obvious change of the destruction forms. Compression velocity affects slightly the macro appearance of the sample compressed at semisolid temperatures.展开更多
Microstructure and mechanical behavior of high volume content SiCp/7xxxAl composites have not been explored yet. Therefore, in the present work, 45 vol.% SiCp/7075Al composite has been prepared by pres- sure infiltrat...Microstructure and mechanical behavior of high volume content SiCp/7xxxAl composites have not been explored yet. Therefore, in the present work, 45 vol.% SiCp/7075Al composite has been prepared by pres- sure infiltration method. High density dislocations were found around SiC/Al interface in SiCp/7075Al composite after water-quenching and aging treatment. Fine dispersed nano-η' phases were observed after the aging treatment. Adverse to other SiCp/Al composites prepared by the pressure infiltration method, an interface layer was observed between SiC particles and AI matrix. Furthermore, high-resolution trans- mission electron microscopy (HRTEM) observation indicated that this interface layer was coherent/semi- coherent with that of the SiC particles. 45 vol.% SiCp/7075Al composite demonstrated high tensile strength (630 MPa) and micro-ductility. Compared to aged SiCp/2024Al composite, the aged SiCp/7075Al com- posite showed an increase of about 200% in the tensile strain and 90% in the tensile strength, respectively. It is speculated that nano-η' phases in the Al matrix significantly contributed to the strengthening effect while the interface layer between SiC and AI matrix might be beneficial to the strength and plasticity of SiCp/7075Al composite.展开更多
Metal matrix composites (MMCs) as advanced materials, while producing the components with high dimensional accuracy and intricate shapes, are more complex and cost effective for machining than conventional alloys. I...Metal matrix composites (MMCs) as advanced materials, while producing the components with high dimensional accuracy and intricate shapes, are more complex and cost effective for machining than conventional alloys. It is due to the presence of discontinuously distributed hard ceramic with the MMCs and involvement of a large number of machining control variables. However, determination of optimal machining conditions helps the process engineer to make the process efficient and effec- tive. In the present investigation a novel hybrid multi-response optimization approach is proposed to derive the economic machining conditions for MMCs. This hybrid approach integrates the concepts of grey relational analysis (GRA), principal component analysis (PCA) and Taguchi method (TM) to derive the optimal machining conditions. The machining experiments are planned to machine A17075/SiCp MMCs using wire-electrical discharge machining (WEDM) process. SiC particulate size and its weight percentage are explicitly considered here as the process variables along with the WEDM input variables. The derived optimal process responses are confirmed by the experimental validation tests and the results show satisfactory. The practical possibility of the derived optimal machining conditions is also analyzed and presented using scanning electron microscope (SEM) examinations. According to the growing industrial need of making high performance, low cost components, this investigation provides a simple and sequential approach to enhance the WEDM performance while machining MMCs.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.51165032,51102131)the Innovative Group of Science and Technology of College of Jiangxi Province(No.00008713)
文摘The thermodynamics and kinetics of the reaction between Titanium powder and 7075 aluminum alloy were investigated to assess the possibility of preparing TiA1J7075 composites by in-situ synthesis method. Results show that Ti and A1 melt can form TiA13 spontaneously, which is considered as a reinforced phase of the matrix. Measurements such as XRD, SEM, and EDX were performed to characterize the as-synthesized samples, and results confirmed the formation of TiA13 in aluminum matrix composites. The reactive kinetics was controlled by three main factors, which are the system temperature, particle size of Ti, and the thickness of external diffusion layer.
文摘In the present study, in-situ Ti B2 particle-reinforced 7075 aluminum alloy was produced by adding a mixture of K2 Ti F6 and KBF4 to the molten base alloy. The effects of the addition of 4.5wt.% and 9wt.%Ti B2 on the apparent viscosity and microstructure were investigated. The results showed that adding Ti B2 is effective for optimizing primary α-Al, but compared with the 4.5wt.%Ti B2/7075 composite, the addition of 9wt.%Ti B2 had no further significant refinement role in the 9wt.%Ti B2/7075 composite due to particle aggregation. The viscosities of semi-solid 7075 alloy and Ti B2/7075 composite slurries increased with an increase in solid fraction, but decreased with an increase in shear rate. The viscosity of 4.5wt.% Ti B2/7075 was the lowest among the three samples, and that of 7075 alloy was the highest under the same conditions. The primary α-Al grain size was decreased, and the dendritic grains grew into spherical shapes after shearing. Based on the experimental results, viscosity models of the semi-solid 7075 alloy and 4.5wt.% and 9wt.%Ti B2/7075 composites were formulated. According to the simulation results, the shrinkage porosity of the 4.5wt.%Ti B2/7075 wheel was lower than those of the 7075 alloy and 9wt.%Ti B2/7075 wheels.
基金This work was supported by Alexander von Humboldt Foundation of Germany and the National Natural Science Foundation of China under the grant number of
文摘Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (about 100 nm in size) were precipitated nearby the grain boundaries where the TiB2 particles exist. After deformation at 300 degreesC, some of the large precipitates and all the small precipitates in these area dissolved into the matrix, meanwhile, fine precipitates were formed in grains. After deformation at 450 degreesC, all the precipitates in the annealed composite dissolved into the matrix, and new phases were precipitated in grains. The dissolution of the large fiber-like precipitate makes the saturation level of the matrix increased and leads to an increased solution hardening and natural aging, which contribute much to the hardening effect.
文摘Al7075-Cu composite joints were prepared by the squeeze overcast process.The effects of melt temperature,die temperature,and squeeze pressure on hardness and ultimate tensile strength(UTS)of squeeze overcast Al7075-Cu composite joints were studied.The experimental results depict that squeeze pressure is the most significant process parameter affecting the hardness and UTS.The optimal values of UTS(48 MPa)and hardness(76 HRB)are achieved at a melt temperature of 800℃,a die temperature of 250℃,and a squeeze pressure of 90 MPa.Scanning electron microscopy(SEM)shows that fractured surfaces show flatfaced morphology at the optimal experimental condition.Energy-dispersive spectroscopy(EDS)analysis depicts that the atomic weight percentage of Zn decreases with an increase in melt temperature and squeeze pressure.The optimal mechanical properties of the Al7075-Cu overcast joint were achieved at the Al2Cu eutectic phase due to the large number of copper atoms that dispersed into the aluminum melt during the solidification process and the formation of strong intermetallic bonds.Gray relational analysis integrated with the Taguchi method was used to develop an optimal set of control variables for multi-response parametric optimization.Confirmatory tests were performed to validate the effectiveness of the employed technique.The manufacturing of squeeze overcast Al7075-Cu composite joints at optimal process parameters delivers a great indication to acknowledge a new method for foundry practitioners to manufacture materials with superior mechanical properties.
基金supported by the National Natural Science Foundation of China(No.51375112)the Fund of the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology(No.SKLAB02015003)
文摘The 7075 aluminium matrix composite reinforced with nano-sized Si C particles was fabricated by ultrasonic assisted semisolid stirring method. The compression mechanical behaviour of the fabricated composite in semisolid state was investigated. The results show that the microstructure of the composite before semisolid compression consists of fine and spheroidal solid grains surrounded by liquid phase.Semisolid compression led to a nonuniform plastic deformation of solid grains. A slight plastic deformation occurred in the locations near the free surface due to the dependence of deformation on liquid flow and flow of liquid incorporating solid grains. However, obvious plastic deformation occurred in the central location and location contacting to die due to the contribution of plastic deformation of solid grains.The true stress–strain curve of the sample compressed at 500 °C consists of rapid increase of true stress and steady stage. However, rapid increase of true stress and decrease of true stress and steady stage are involved in the true stress–strain curves of the samples compressed at 550, 560, 570, 580 and 590 °C.The true stress–strain curve at 600 °C is similar to that at 500 °C. Apparent viscosity decreases with an increase of shear rate, indicating a shear thinning occurrence. When soaking time increases from 5 min to 15 min, the peak stress and steady stress decrease significantly. A further increase of the soaking time led to a slight change. Peak stress and steady stress increase with increasing volume fraction of Si C particles. A sudden increase or decrease of compression velocity led to a significant increase or decrease of the steady stress. The destruction of the samples compressed at solid state temperature mainly depends on cracks parallel to compression direction. However, the destruction forms of the samples compressed at semisolid temperatures consist of cracks parallel to compression direction and partial collapse. Increasing soaking time led to an obvious change of the destruction forms. Compression velocity affects slightly the macro appearance of the sample compressed at semisolid temperatures.
基金the financial support of the project from "Key Laboratory Fund (5780011513) of Harbin Institute of Technology""University Basic Fund (5710011113) of Harbin Institute of Technology""the Fundamental Research Funds for the Central Universities" (Grant No. HIT. NSRIF. 20161)
文摘Microstructure and mechanical behavior of high volume content SiCp/7xxxAl composites have not been explored yet. Therefore, in the present work, 45 vol.% SiCp/7075Al composite has been prepared by pres- sure infiltration method. High density dislocations were found around SiC/Al interface in SiCp/7075Al composite after water-quenching and aging treatment. Fine dispersed nano-η' phases were observed after the aging treatment. Adverse to other SiCp/Al composites prepared by the pressure infiltration method, an interface layer was observed between SiC particles and AI matrix. Furthermore, high-resolution trans- mission electron microscopy (HRTEM) observation indicated that this interface layer was coherent/semi- coherent with that of the SiC particles. 45 vol.% SiCp/7075Al composite demonstrated high tensile strength (630 MPa) and micro-ductility. Compared to aged SiCp/2024Al composite, the aged SiCp/7075Al com- posite showed an increase of about 200% in the tensile strain and 90% in the tensile strength, respectively. It is speculated that nano-η' phases in the Al matrix significantly contributed to the strengthening effect while the interface layer between SiC and AI matrix might be beneficial to the strength and plasticity of SiCp/7075Al composite.
文摘Metal matrix composites (MMCs) as advanced materials, while producing the components with high dimensional accuracy and intricate shapes, are more complex and cost effective for machining than conventional alloys. It is due to the presence of discontinuously distributed hard ceramic with the MMCs and involvement of a large number of machining control variables. However, determination of optimal machining conditions helps the process engineer to make the process efficient and effec- tive. In the present investigation a novel hybrid multi-response optimization approach is proposed to derive the economic machining conditions for MMCs. This hybrid approach integrates the concepts of grey relational analysis (GRA), principal component analysis (PCA) and Taguchi method (TM) to derive the optimal machining conditions. The machining experiments are planned to machine A17075/SiCp MMCs using wire-electrical discharge machining (WEDM) process. SiC particulate size and its weight percentage are explicitly considered here as the process variables along with the WEDM input variables. The derived optimal process responses are confirmed by the experimental validation tests and the results show satisfactory. The practical possibility of the derived optimal machining conditions is also analyzed and presented using scanning electron microscope (SEM) examinations. According to the growing industrial need of making high performance, low cost components, this investigation provides a simple and sequential approach to enhance the WEDM performance while machining MMCs.