The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and ...The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.展开更多
The effects of a novel three-step aging process (T76+T6) on the electrochemical corrosion behavior of 7150 extruded aluminum alloy were evaluated and compared with those of the conventional retrogression and re-agi...The effects of a novel three-step aging process (T76+T6) on the electrochemical corrosion behavior of 7150 extruded aluminum alloy were evaluated and compared with those of the conventional retrogression and re-aging process (T77). The open circuit potential (OCP), cyclic polarization and electrochemical impedance spectra (EIS) of the A1 alloys were measured after treatment in three solutions (3.5% NaCl (mass fraction); 10 mmol/L NaCl + 0.1 mol/L Na2SO4; 4 mol/L NaCl + 0.5 mol/L KNO3 + 0.1 mol/L HNO3). The parameters including the corrosion potential, pitting potential, pit transition potential and steepness, and potential differences were extensively discussed to evaluate the corrosion behavior of the Al alloys. The electrochemical and scanning electron microscopy (SEM) data show that compared with the 7150-T77 Al alloy, the T76 + T6 aged 7150 A1 alloy exhibits better resistance to pitting corrosion, inter-granular corrosion (IGC) and exfoliation corrosion, which is attributed to further coarsening and inter-spacing of the grain boundary particles (GBPs) as revealed by transmission electron microscopy. Furthermore, the hardness tests indicate that an attractive combination of strength and corrosion resistance was obtained for the 7150 Al alloy with T76 + T6 treatment.展开更多
基金Project(2014CB046602)supported by the National Basic Research Program of ChinaProject(20120162110003)supported by Ph D Programs Foundation of Ministry of Education of China
文摘The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.
基金Projects(51134007,51201186)supported by the National Natural Science Foundation of ChinaProject(51327902)supported by the Major Research Equipment Development,China+1 种基金Projects(2012CB619502,2010CB731701)supported by the National Basic Research Program of ChinaProject(12JJ6040)supported by the Natural Science Foundation of Hunan Province,China
文摘The effects of a novel three-step aging process (T76+T6) on the electrochemical corrosion behavior of 7150 extruded aluminum alloy were evaluated and compared with those of the conventional retrogression and re-aging process (T77). The open circuit potential (OCP), cyclic polarization and electrochemical impedance spectra (EIS) of the A1 alloys were measured after treatment in three solutions (3.5% NaCl (mass fraction); 10 mmol/L NaCl + 0.1 mol/L Na2SO4; 4 mol/L NaCl + 0.5 mol/L KNO3 + 0.1 mol/L HNO3). The parameters including the corrosion potential, pitting potential, pit transition potential and steepness, and potential differences were extensively discussed to evaluate the corrosion behavior of the Al alloys. The electrochemical and scanning electron microscopy (SEM) data show that compared with the 7150-T77 Al alloy, the T76 + T6 aged 7150 A1 alloy exhibits better resistance to pitting corrosion, inter-granular corrosion (IGC) and exfoliation corrosion, which is attributed to further coarsening and inter-spacing of the grain boundary particles (GBPs) as revealed by transmission electron microscopy. Furthermore, the hardness tests indicate that an attractive combination of strength and corrosion resistance was obtained for the 7150 Al alloy with T76 + T6 treatment.