A thorough detector response calibration using radioactive sources is necessary for the Jiangmen Underground Neutrino Observatory. Herein, we discuss the design of a source positioning system based on ultrasonic techn...A thorough detector response calibration using radioactive sources is necessary for the Jiangmen Underground Neutrino Observatory. Herein, we discuss the design of a source positioning system based on ultrasonic technology, aiming for a 3-cm precision over the entire35-m diameter detector sphere. A prototype system is constructed and demonstrated for the experiment.展开更多
Nowadays global navigation satellite system(GNSS)receivers are the primary tool not only for precision surveying but also for geodesy,geophysics and many other industrial applications worldwide.The only way to assure ...Nowadays global navigation satellite system(GNSS)receivers are the primary tool not only for precision surveying but also for geodesy,geophysics and many other industrial applications worldwide.The only way to assure the accuracy,universality and longevity of GNSS measurements is by calibration of its receivers.The parameters affecting the calibration accuracy of a single GNSS receiver are discussed in this paper.And a geodetic basepoint is established according to previous empirical studies to serve as a reference for calibration.Additionally,the traceability to the systeme international(SI)unit of such kind of calibrations is discussed.Stability of the base point is also verified through long-term measurements over three years.Eventually,a calibration of a sample single GNSS receiver is performed and the uncertainty budget is derived.展开更多
A high precision method used for on-spot calibration of distributed stereoreference position setting is presented. The high measuring accuracy in stereo reference calibrationis derived from using a high precision wate...A high precision method used for on-spot calibration of distributed stereoreference position setting is presented. The high measuring accuracy in stereo reference calibrationis derived from using a high precision water level instrument and an accurate height verniercaliper. It settles the problem of reference calibration effectively and accurately, without usinglarge coordinate measuring machines (CMM). It is more adaptable and precise than traditionalcalibration methods applying theodolites or autocollimators. The error sources of this method areanalyzed in detail and several methods are developed to eliminate the calibration error.Anoptimizing swallowtail-like anchor target is developed. Experiments show that the calibrationaccuracy can be limited within 0.06 mm in the range of 3~5 m and 0.03 mm with optimizing anchortarget. This method can be widely used in on-spot calibration.展开更多
Near-nadir observations by the Multispectral Instrument (MSI) onboard the Sentinel-2 and the Operational Land Imager (OLI) onboard Landsat 8 were collected during two Simultaneous Nadir Overpasses (SNO). Multispectral...Near-nadir observations by the Multispectral Instrument (MSI) onboard the Sentinel-2 and the Operational Land Imager (OLI) onboard Landsat 8 were collected during two Simultaneous Nadir Overpasses (SNO). Multispectral images with 10, 20, and 30 m resolution from a spatially uniform area in the Saharan desert were acquired for direct comparison of MSI and OLI Top- Of-Atmosphere (TOA) reflectances. This paper presents an initial radiometric cross-calibration of the 8 corresponding spectral bands of the Sentinel-2 MSI and Landsat 8 OLI sensors. With the well-calibrated Landsat 8 OLI as a reference, the comparison indicates that 6 MSI bands are consistent with OLI within 3% in terms of spectral band adjustment factors Bi . The Near-Infra-Red (NIR) and cirrus bands are exceptions. They yield radiometric differences on the order of 8% and 15% respectively. Cross-calibration results show that the radiometric difference of the 7 corresponding bands are consistent to OLI within 1% or better, except on cirrus band. A pixel-by-pixel match between the MSI and OLI observations for different land covers showed that. This initial study suggests that the red-edge band B8A of MSI can be used to replace the NIR band B08 when conducting vegetation monitoring.展开更多
Lupus nephritis(LN) has a high incidence in systemic lupus erythematosus(SLE) patients, but there is a lack of sensitive predictive markers. The purpose of the study was to investigate the association between the CD4^...Lupus nephritis(LN) has a high incidence in systemic lupus erythematosus(SLE) patients, but there is a lack of sensitive predictive markers. The purpose of the study was to investigate the association between the CD4^(+)CD8^(+)double positive T(DPT) lymphocytes and LN. The study included patients with SLE without renal impairment(SLE-NRI), LN, nephritic syndrome(NS), or nephritis. Peripheral blood lymphocyte subsets were analyzed by flow cytometry. Biochemical measurements were performed with peripheral blood in accordance with the recommendations proposed by the National Center for Clinical Laboratories. The proportions of DPT cells in the LN group were significantly higher than that in the SLE-NRI group(t=4.012, P<0.001), NS group(t=3.240,P=0.001), and nephritis group(t=2.57, P=0.011). In the LN group, the risk of renal impairment increased significantly in a DPT cells proportion-dependent manner. The risk of LN was 5.136 times(95% confidence interval, 2.115–12.473) higher in cases with a high proportion of DPT cells than those whose proportion of DPT cells within the normal range. These findings indicated that the proportion of DPT cells could be a potential marker to evaluate LN susceptibility, and the interference of NS and nephritis could be effectively excluded when assessing the risk of renal impairment during SLE with DPT cell proportion.展开更多
The kinematic error model of a 6-DOF space robot is deduced, and the cost function of kinematic parameter identification is built. With the aid of the genetic algorithm (GA) that has the powerful global adaptive pro...The kinematic error model of a 6-DOF space robot is deduced, and the cost function of kinematic parameter identification is built. With the aid of the genetic algorithm (GA) that has the powerful global adaptive probabilistic search ability, 24 parameters of the robot are identified through simulation, which makes the pose (position and orientation) accuracy of the robot a great improvement. In the process of the calibration, stochastic measurement noises are considered. Lastly, generalization of the identified kinematic parameters in the whole workspace of the robot is discussed. The simulation results show that calibrating the robot with GA is very stable and not sensitive to measurement noise. Moreover, even if the robot's kinematic parameters are relative, GA still has strong search ability to find the optimum solution.展开更多
In order to solve the visual guiding task of initial welding position for arc welding robot, this paper presents a practice prone image based visual servo control strategy without calibration, and we perform validat...In order to solve the visual guiding task of initial welding position for arc welding robot, this paper presents a practice prone image based visual servo control strategy without calibration, and we perform validating experiments on a nine DOF arc welding robot system. Experimental results illustrate presented method has the function to fulfill the task of welding robot initial positioning with certain anti jamming ability. This method provides a basis for guiding welding gun to initial welding pose with real typical seam’s image properties to replace flag block properties, and is a significant exploit to realize visual guiding of initial welding position and seam tracing in robot welding system.展开更多
Efficient calibration methods have been applied to a complex neutron detector array by using the cosmic-ray muons. Through a differential operation on the time difference spectrum, the two edges of this spectrum can b...Efficient calibration methods have been applied to a complex neutron detector array by using the cosmic-ray muons. Through a differential operation on the time difference spectrum, the two edges of this spectrum can be precisely determined, corresponding to the geometrical two ends of the bar, and therefore the relationship between the position and time difference spectrum can be deduced for each bar. The alignment between different bars is realized by choosing cosmic- rays which are perpendicular to the bars. The position resolutions are extracted through a track fitting procedure which uses all tracks detected coincidently by the whole system, together with a simulation analysis. A method is also developed to calibrate the deposited energy by using cosmic-rays at different incident angles.展开更多
A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity er...A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity errors of PSD and a multilayer feedforward neural network based on error back-propagation algorithm was used to compensate errors. With the aid of computer-based data acquisition system, an automatic dynamic measuring process was realized. A series of experiments, including comparison tests with laser interferometer, were done to evaluate the performance of the measuring system. The experimental results show that the spatial straightness errors of guide rails can be measured with high accuracy. The maximum differences between the device and laser interferometer are 0.027 mm in Y direction, and 0.053 mm in X direction in the measuring distance of 6 m.展开更多
A measurement setup used for robot calibration was designed to meet the requirement of off line programming technique. The robot end effector pose (position and orientation) can be calculated indirectly by using thi...A measurement setup used for robot calibration was designed to meet the requirement of off line programming technique. The robot end effector pose (position and orientation) can be calculated indirectly by using this setup. The setup has been applied to RHJD4 1 arc welding robot. The experimental results show the method of pose measuring using the measurement setup is simple and reliable to finish pose measuring for robot calibration. In addition, the setup can measure the position repeatability of robot.展开更多
Wire position monitor(WPM)is designed to monitor contraction of the cold masses during the cooling-down operation in an accelerator driven system.Because of material difference,machining error,assembly error,etc.,each...Wire position monitor(WPM)is designed to monitor contraction of the cold masses during the cooling-down operation in an accelerator driven system.Because of material difference,machining error,assembly error,etc.,each WPM has to be calibrated.The sensing voltage and wire position are of a nonlinear relationship,which is expressed by high order polynomial.Root mean square(RMS)of the polynomial fitting error were 3.8μm and 7.4μm at x and y directions,respectively.The alignment test was carried out on the beta cryostat.Optical instruments were used to verify the WPM measuring results.The differences between WPM measuring results and optical measurements were 0.044 and 0.05 mm in x and y direction,respectively.A significant asymmetric contraction was detected,and asymmetry of material was taken as the main reason through analysis.展开更多
The four electrodes in the stripline beam position monitor(BPM) for Hefei Light Source(HLS II) storage ring are of axially symmetric type. We have derived a new calibration method of electrode gains for this type stri...The four electrodes in the stripline beam position monitor(BPM) for Hefei Light Source(HLS II) storage ring are of axially symmetric type. We have derived a new calibration method of electrode gains for this type stripline BPM. The gain fit error of different data grids was analyzed, and the ±5 mm by ±5 mm grid is the best.The electrode gains of two stripline BPMs(HLS II SR-BD-STLB1 and HLS II SR-BD-STLB2) were obtained based on offline calibrated data. The results show that data after fitting gains are improved, with the electrode gains being between 0.94 and 1.15.展开更多
Beam current dependence resulted from nonlinearity and asymmetry of the four channels of digital BPM(Beam Position Monitor) processor deteriorates the BPM performance.A systematic solution based on signal source calib...Beam current dependence resulted from nonlinearity and asymmetry of the four channels of digital BPM(Beam Position Monitor) processor deteriorates the BPM performance.A systematic solution based on signal source calibration tactics has been carried out to rectify this defect.It is optimized for implementation in FPGA.Mathematical illustrations of the calibration method,hardware and software design and implementation are presented.A signal source circuit using frequency synthesis technique is designed as calibration standard.Data acquisition system using JAVA web technology and Ethernet is introduced.Integrated FPGA implementation code architecture is presented,and experimental test results show that the method implemented in FPGA is feasible.Compared to other methods,our approach can rectify the nonlinearity and asymmetry simultaneously.The whole solution is integrated into the DBPM processor and can be executed online.展开更多
A new calibration method of L-band radar accuracy using a rotary-wing drone equipped with"GPS"satellite positioning system was proposed.The L-band radar calibration system scheme based on this method was des...A new calibration method of L-band radar accuracy using a rotary-wing drone equipped with"GPS"satellite positioning system was proposed.The L-band radar calibration system scheme based on this method was designed.The theoretical basis required for system realization was studied,and the system calibration method was given.The calibration results referred to the domestic new generation weather radar antenna beam pointing calibration technical indicator(≤0.3°),and its accuracy met relevant business requirement.It show that this method can easily and quickly complete the radar system calibration.Compared with the traditional radar calibration method,it is more convenient,less affected by surrounding environment,and has low requirements on the weather.展开更多
As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam positio...As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam position monitor based on position-sensitive detector (PSD) has been developed to measure the photon beam position in vertical and horizontal directions at the same time at HLS (Hefei Light Source). The new PBPM based on the PSD has fast response speed, high sensitivity and wide dynamic range. This PBPM system also includes the C4674 signal processing circuit, NI USB-9215 data acquisition device and the LABVIEW data acquisition program. This PBPM system has been calibrated vertically and horizontally on-line, and then has been applied in the beam line B3EA of HLS to measure the position of the synchrotron light. As the results shown, the resolution of the system is better than 3 mm.展开更多
基金supported by the ‘‘Strategic Priority Research Program’’ of the Chinese Academy of Sciences(No.XDA10010800)the ‘‘Fundamental Research Funds for the Central Universities’’(No.3102017zy010)
文摘A thorough detector response calibration using radioactive sources is necessary for the Jiangmen Underground Neutrino Observatory. Herein, we discuss the design of a source positioning system based on ultrasonic technology, aiming for a 3-cm precision over the entire35-m diameter detector sphere. A prototype system is constructed and demonstrated for the experiment.
文摘Nowadays global navigation satellite system(GNSS)receivers are the primary tool not only for precision surveying but also for geodesy,geophysics and many other industrial applications worldwide.The only way to assure the accuracy,universality and longevity of GNSS measurements is by calibration of its receivers.The parameters affecting the calibration accuracy of a single GNSS receiver are discussed in this paper.And a geodetic basepoint is established according to previous empirical studies to serve as a reference for calibration.Additionally,the traceability to the systeme international(SI)unit of such kind of calibrations is discussed.Stability of the base point is also verified through long-term measurements over three years.Eventually,a calibration of a sample single GNSS receiver is performed and the uncertainty budget is derived.
基金This project is supported by 863 Program Committee of China (No. 863-512-9804-11).
文摘A high precision method used for on-spot calibration of distributed stereoreference position setting is presented. The high measuring accuracy in stereo reference calibrationis derived from using a high precision water level instrument and an accurate height verniercaliper. It settles the problem of reference calibration effectively and accurately, without usinglarge coordinate measuring machines (CMM). It is more adaptable and precise than traditionalcalibration methods applying theodolites or autocollimators. The error sources of this method areanalyzed in detail and several methods are developed to eliminate the calibration error.Anoptimizing swallowtail-like anchor target is developed. Experiments show that the calibrationaccuracy can be limited within 0.06 mm in the range of 3~5 m and 0.03 mm with optimizing anchortarget. This method can be widely used in on-spot calibration.
文摘Near-nadir observations by the Multispectral Instrument (MSI) onboard the Sentinel-2 and the Operational Land Imager (OLI) onboard Landsat 8 were collected during two Simultaneous Nadir Overpasses (SNO). Multispectral images with 10, 20, and 30 m resolution from a spatially uniform area in the Saharan desert were acquired for direct comparison of MSI and OLI Top- Of-Atmosphere (TOA) reflectances. This paper presents an initial radiometric cross-calibration of the 8 corresponding spectral bands of the Sentinel-2 MSI and Landsat 8 OLI sensors. With the well-calibrated Landsat 8 OLI as a reference, the comparison indicates that 6 MSI bands are consistent with OLI within 3% in terms of spectral band adjustment factors Bi . The Near-Infra-Red (NIR) and cirrus bands are exceptions. They yield radiometric differences on the order of 8% and 15% respectively. Cross-calibration results show that the radiometric difference of the 7 corresponding bands are consistent to OLI within 1% or better, except on cirrus band. A pixel-by-pixel match between the MSI and OLI observations for different land covers showed that. This initial study suggests that the red-edge band B8A of MSI can be used to replace the NIR band B08 when conducting vegetation monitoring.
基金supported by the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1415)the Special Project of Sichuan Province Traditional Chinese Medicine Administration (Grant No. 2020JC0124)+1 种基金the Management Project of General Hospital of Western Theater Command (Grants No. 2021-XZYG-C22 and 2021-XZYG-C21)the Spark Young Innovative Talent Project of General Hospital of Western Theater Command。
文摘Lupus nephritis(LN) has a high incidence in systemic lupus erythematosus(SLE) patients, but there is a lack of sensitive predictive markers. The purpose of the study was to investigate the association between the CD4^(+)CD8^(+)double positive T(DPT) lymphocytes and LN. The study included patients with SLE without renal impairment(SLE-NRI), LN, nephritic syndrome(NS), or nephritis. Peripheral blood lymphocyte subsets were analyzed by flow cytometry. Biochemical measurements were performed with peripheral blood in accordance with the recommendations proposed by the National Center for Clinical Laboratories. The proportions of DPT cells in the LN group were significantly higher than that in the SLE-NRI group(t=4.012, P<0.001), NS group(t=3.240,P=0.001), and nephritis group(t=2.57, P=0.011). In the LN group, the risk of renal impairment increased significantly in a DPT cells proportion-dependent manner. The risk of LN was 5.136 times(95% confidence interval, 2.115–12.473) higher in cases with a high proportion of DPT cells than those whose proportion of DPT cells within the normal range. These findings indicated that the proportion of DPT cells could be a potential marker to evaluate LN susceptibility, and the interference of NS and nephritis could be effectively excluded when assessing the risk of renal impairment during SLE with DPT cell proportion.
基金supported by National Natural Science Foundation of China(No.60775049).
文摘The kinematic error model of a 6-DOF space robot is deduced, and the cost function of kinematic parameter identification is built. With the aid of the genetic algorithm (GA) that has the powerful global adaptive probabilistic search ability, 24 parameters of the robot are identified through simulation, which makes the pose (position and orientation) accuracy of the robot a great improvement. In the process of the calibration, stochastic measurement noises are considered. Lastly, generalization of the identified kinematic parameters in the whole workspace of the robot is discussed. The simulation results show that calibrating the robot with GA is very stable and not sensitive to measurement noise. Moreover, even if the robot's kinematic parameters are relative, GA still has strong search ability to find the optimum solution.
基金NationalNatureScienceFoundation (No .5 963 5 160 )
文摘In order to solve the visual guiding task of initial welding position for arc welding robot, this paper presents a practice prone image based visual servo control strategy without calibration, and we perform validating experiments on a nine DOF arc welding robot system. Experimental results illustrate presented method has the function to fulfill the task of welding robot initial positioning with certain anti jamming ability. This method provides a basis for guiding welding gun to initial welding pose with real typical seam’s image properties to replace flag block properties, and is a significant exploit to realize visual guiding of initial welding position and seam tracing in robot welding system.
基金supported by the National Basic Research Program of China (No. 2007CB815002)National Natural Science Foundation of China(Nos. 11035001, 10775003, 10827505, 10821140159)
文摘Efficient calibration methods have been applied to a complex neutron detector array by using the cosmic-ray muons. Through a differential operation on the time difference spectrum, the two edges of this spectrum can be precisely determined, corresponding to the geometrical two ends of the bar, and therefore the relationship between the position and time difference spectrum can be deduced for each bar. The alignment between different bars is realized by choosing cosmic- rays which are perpendicular to the bars. The position resolutions are extracted through a track fitting procedure which uses all tracks detected coincidently by the whole system, together with a simulation analysis. A method is also developed to calibrate the deposited energy by using cosmic-rays at different incident angles.
文摘A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity errors of PSD and a multilayer feedforward neural network based on error back-propagation algorithm was used to compensate errors. With the aid of computer-based data acquisition system, an automatic dynamic measuring process was realized. A series of experiments, including comparison tests with laser interferometer, were done to evaluate the performance of the measuring system. The experimental results show that the spatial straightness errors of guide rails can be measured with high accuracy. The maximum differences between the device and laser interferometer are 0.027 mm in Y direction, and 0.053 mm in X direction in the measuring distance of 6 m.
文摘A measurement setup used for robot calibration was designed to meet the requirement of off line programming technique. The robot end effector pose (position and orientation) can be calculated indirectly by using this setup. The setup has been applied to RHJD4 1 arc welding robot. The experimental results show the method of pose measuring using the measurement setup is simple and reliable to finish pose measuring for robot calibration. In addition, the setup can measure the position repeatability of robot.
基金Supported by the Project of Injector I Mechanical&Technical Support System
文摘Wire position monitor(WPM)is designed to monitor contraction of the cold masses during the cooling-down operation in an accelerator driven system.Because of material difference,machining error,assembly error,etc.,each WPM has to be calibrated.The sensing voltage and wire position are of a nonlinear relationship,which is expressed by high order polynomial.Root mean square(RMS)of the polynomial fitting error were 3.8μm and 7.4μm at x and y directions,respectively.The alignment test was carried out on the beta cryostat.Optical instruments were used to verify the WPM measuring results.The differences between WPM measuring results and optical measurements were 0.044 and 0.05 mm in x and y direction,respectively.A significant asymmetric contraction was detected,and asymmetry of material was taken as the main reason through analysis.
基金Supported by the Natural Science Foundation of China(Nos.11175173,11375178 and 11005105)
文摘The four electrodes in the stripline beam position monitor(BPM) for Hefei Light Source(HLS II) storage ring are of axially symmetric type. We have derived a new calibration method of electrode gains for this type stripline BPM. The gain fit error of different data grids was analyzed, and the ±5 mm by ±5 mm grid is the best.The electrode gains of two stripline BPMs(HLS II SR-BD-STLB1 and HLS II SR-BD-STLB2) were obtained based on offline calibrated data. The results show that data after fitting gains are improved, with the electrode gains being between 0.94 and 1.15.
基金Supported by the National Natural Science Foundation of China(No.11075198)
文摘Beam current dependence resulted from nonlinearity and asymmetry of the four channels of digital BPM(Beam Position Monitor) processor deteriorates the BPM performance.A systematic solution based on signal source calibration tactics has been carried out to rectify this defect.It is optimized for implementation in FPGA.Mathematical illustrations of the calibration method,hardware and software design and implementation are presented.A signal source circuit using frequency synthesis technique is designed as calibration standard.Data acquisition system using JAVA web technology and Ethernet is introduced.Integrated FPGA implementation code architecture is presented,and experimental test results show that the method implemented in FPGA is feasible.Compared to other methods,our approach can rectify the nonlinearity and asymmetry simultaneously.The whole solution is integrated into the DBPM processor and can be executed online.
文摘A new calibration method of L-band radar accuracy using a rotary-wing drone equipped with"GPS"satellite positioning system was proposed.The L-band radar calibration system scheme based on this method was designed.The theoretical basis required for system realization was studied,and the system calibration method was given.The calibration results referred to the domestic new generation weather radar antenna beam pointing calibration technical indicator(≤0.3°),and its accuracy met relevant business requirement.It show that this method can easily and quickly complete the radar system calibration.Compared with the traditional radar calibration method,it is more convenient,less affected by surrounding environment,and has low requirements on the weather.
基金Supported by the National Science Foundation of China (10675118, 11175173)
文摘As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam position monitor based on position-sensitive detector (PSD) has been developed to measure the photon beam position in vertical and horizontal directions at the same time at HLS (Hefei Light Source). The new PBPM based on the PSD has fast response speed, high sensitivity and wide dynamic range. This PBPM system also includes the C4674 signal processing circuit, NI USB-9215 data acquisition device and the LABVIEW data acquisition program. This PBPM system has been calibrated vertically and horizontally on-line, and then has been applied in the beam line B3EA of HLS to measure the position of the synchrotron light. As the results shown, the resolution of the system is better than 3 mm.