The giant magneto-impedance (GMI) effect associated with the variation of transverse permeability for the ribbons Fe89Zr6Hf1B4 with different annealing temperatures T-A = 793, 823, 893, 923, 993, and 1033 K was invest...The giant magneto-impedance (GMI) effect associated with the variation of transverse permeability for the ribbons Fe89Zr6Hf1B4 with different annealing temperatures T-A = 793, 823, 893, 923, 993, and 1033 K was investigated. There is an optimum annealing temperature TA = 993 K for obtaining the largest GMI effect for the ribbons Fe89Zr6Hf1B4. The magneto-impedance GMI (Z) = (Z(H) - Z(0))/Z(0) for the ribbon with T-A = 993 K can reach -55.09% at a frequency f = 900 kHz under H = 7162 A/m. The relative changes of the real part of transverse permeability Delta mu'/mu'(0) = (mu'(H)- mu'(0))/mu'(0) under H = 7162 A center dot m(-1) at f = 1 MHz are -78.83%, -89.98% and -94.77 % for Fe89Zr6Hf1B4 ribbons with T-A = 823, 893, and 993 K, respectively. The strong GMI effect is accompanied by the large change of transverse permeability. A large magnetoreaetance GMI(X) = (X (H) - X (0))/X (0) of -81.09% can be obtained at f = 100 kHz under H = 7162 A/m for the ribbon with T-A = 993 K. Meanwhile, this present result gave an experimental support to the previous concept / assumption that the positive peak in the field dependence of magneto-impedance is connected to the peak of transverse permeability with varying fields.展开更多
Acute kidney injury(AKI)leads to unacceptably high mortality due to difficulties in timely intervention and less efficient renal delivery of therapeutic drugs.Here,a series of polyvinylpyrrolidone(PVP)-curcumin nanopa...Acute kidney injury(AKI)leads to unacceptably high mortality due to difficulties in timely intervention and less efficient renal delivery of therapeutic drugs.Here,a series of polyvinylpyrrolidone(PVP)-curcumin nanoparticles(PCurNP)are designed to meet the renal excretion threshold(~45 kDa),presenting a controllable delivery nanosystem for kidney targeting.Renal accumulation of the relatively small nanoparticles,^(89)Zr-PCurNP M10 with the diameter between 5 and 8 nm,is found to be 1.7 times and 1.8 times higher than the accumulation of^(89)Zr-PCurNP M29(20-50 nm)and M40(20-50 nm)as revealed by PET imaging.Furthermore,serum creatinine analysis,kidney tissues histology,and tubular injury scores revealed that PCurNP M10 efficiently treated cisplatin-induced AKI.Herein,PCurNP offers a novel and simple strategy for precise PET image-guided drug delivery of renal protective materials.展开更多
基金This project was financially supported by the National Natural Science Foundation of China (No. 50271036).
文摘The giant magneto-impedance (GMI) effect associated with the variation of transverse permeability for the ribbons Fe89Zr6Hf1B4 with different annealing temperatures T-A = 793, 823, 893, 923, 993, and 1033 K was investigated. There is an optimum annealing temperature TA = 993 K for obtaining the largest GMI effect for the ribbons Fe89Zr6Hf1B4. The magneto-impedance GMI (Z) = (Z(H) - Z(0))/Z(0) for the ribbon with T-A = 993 K can reach -55.09% at a frequency f = 900 kHz under H = 7162 A/m. The relative changes of the real part of transverse permeability Delta mu'/mu'(0) = (mu'(H)- mu'(0))/mu'(0) under H = 7162 A center dot m(-1) at f = 1 MHz are -78.83%, -89.98% and -94.77 % for Fe89Zr6Hf1B4 ribbons with T-A = 823, 893, and 993 K, respectively. The strong GMI effect is accompanied by the large change of transverse permeability. A large magnetoreaetance GMI(X) = (X (H) - X (0))/X (0) of -81.09% can be obtained at f = 100 kHz under H = 7162 A/m for the ribbon with T-A = 993 K. Meanwhile, this present result gave an experimental support to the previous concept / assumption that the positive peak in the field dependence of magneto-impedance is connected to the peak of transverse permeability with varying fields.
基金supported by the National Natural Science Foundation of China(81601605,21571147,82102121)the Postdoctoral Science Foundation of China(2016M600670)+2 种基金supported by the University of Wisconsin–Madison,the National Institutes of Health(NIBIB/NCI P30CA014520)the Natural Science Foundation of SZU(Grant No.827-000143)the Shenzhen Peacock Plan(KQTD2016053112051497).
文摘Acute kidney injury(AKI)leads to unacceptably high mortality due to difficulties in timely intervention and less efficient renal delivery of therapeutic drugs.Here,a series of polyvinylpyrrolidone(PVP)-curcumin nanoparticles(PCurNP)are designed to meet the renal excretion threshold(~45 kDa),presenting a controllable delivery nanosystem for kidney targeting.Renal accumulation of the relatively small nanoparticles,^(89)Zr-PCurNP M10 with the diameter between 5 and 8 nm,is found to be 1.7 times and 1.8 times higher than the accumulation of^(89)Zr-PCurNP M29(20-50 nm)and M40(20-50 nm)as revealed by PET imaging.Furthermore,serum creatinine analysis,kidney tissues histology,and tubular injury scores revealed that PCurNP M10 efficiently treated cisplatin-induced AKI.Herein,PCurNP offers a novel and simple strategy for precise PET image-guided drug delivery of renal protective materials.