Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In...Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In the present study,a set of experimental data of two-phase flow patterns and their transitions in a 90°bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported.Gas and liquid superficial velocities are found to range from (1.0~23.6)m/s for gas and(0.09~0.5)m/s for liquid,respectively.Three major flow patterns, namely slug,slug-annular transitional,and annular flows,are observed in this study.Focusing on the differences between flow patterns in bends and their counterparts in straight pipes,detailed analyses of their characteristics are made.The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes,and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined.展开更多
Oil flow through pipe bends is found in many engineering applications. However, up to now, the studies of oil flow field in the pipe bend appear to be relatively sparse, although the oil flow field and the associated ...Oil flow through pipe bends is found in many engineering applications. However, up to now, the studies of oil flow field in the pipe bend appear to be relatively sparse, although the oil flow field and the associated losses of pipe bend are very important in practice. In this paper, the relationships between the turbulent flow of hydraulic oil in a bend and the Reynolds number Re and the curvature ratio δare studied by using computational fluid dynamics (CFD). A particular emphasis is put on hydraulic oil, which differs from air or water, flowing through 90° circular-sectional bend, with the purpose of determining the turbulent flow characteristics as well as losses. Three turbulence models, namely, RNG κ-ε model, realizable k-ε model, and Reynolds stress model (RSM), are used respectively. The simulation results in the form of contour and vector plots for all the three turbulence models for pipe bends having curvature ratio of δ=0.5, and the detailed pressure fields and total pressure losses for different Re and δ for RSM are presented. The RSM can predict the stronger secondary flow in the bend better than other models. As Re increases, the pressure gradient changes rapidly, and the pressure magnitude increases at inner and outer wall of the bend. When δ decreases, two transition points or transition zones of pressure gradient arise at inner wall, meanwhile, the transition point moves towards the inlet at outer wall of the bend. Owing to secondary flow, the total pressure loss factor k increases as the bend tightens, on the contrary, as Re increases, factor k decreases due to higher velocity heads, and the rapid change of pressure gradient on the surface of the bend leads to increasing of friction and separation effects, and magnified swirl intensity of secondary flow. A new mathematical model is proposed for predicting pressure loss in terms of Re and δ in order to provide support to the one-dimensional simulation software. The proposed research provides reference for the analysis of oil flow with higher Re in the large bends.展开更多
This study presents the numerical evaluation about the impact of flow disturbance near the intrados and extrados regions of the 90 degree bended elbow using CFX for several practical cases where the 90 degree bended u...This study presents the numerical evaluation about the impact of flow disturbance near the intrados and extrados regions of the 90 degree bended elbow using CFX for several practical cases where the 90 degree bended upward elbow is located in a proximity to the butterfly valve and the butterfly valve open angle is changed. For the change of a butterfly valve open angle from 60% to 100% and the increase of the distance between a valve and a 90 degree bended elbow, the effect of FAC (Flow-Accelerated Corrosion) in the 90 degree bended elbow may be neglected because the value and distribution of the velocity and shear stress is rapidly decreased comparing with the present status installed in an industry, and the data of 100% valve open (Case 3) and L/D ≈ 5 (Case 4) are very good agreement comparing with the reference data, L/D ≈ 8 (Case 2). The reasons are that flow already maintains a fully developed condition and a steady state in spite of less distance than the reference case, L/D = 8. Therefore, smooth flow fields have approached at a 90 degree bended elbow. Then, the effect of shear stress and vortex is hardly investigated around the intrados area of 90 degree bended elbow.展开更多
A pneumatic test rig is built to test a curved 90° square bend in an open-circuit horizontal-to-horizontal suction wind tunnel system. Sand particles are used to represent the solid phase with a wide range of par...A pneumatic test rig is built to test a curved 90° square bend in an open-circuit horizontal-to-horizontal suction wind tunnel system. Sand particles are used to represent the solid phase with a wide range of particle diameters. Velocity profiles are constructed by measuring the gas velocity using a 3-hole probe. Flow patterns inside the bend duct are introduced using sparks caused by burning sticks of incense with the air flow inside the piping system for flow visualization purpose. Numerical calculations are performed by Lagrangian-particle tracking model for predicting particle trajectories of dispersed phase, and standard k-ε model for predicting the turbulent gas-solid flows in bends. Comparisons made between the theoretical results and experimental data for the velocity vectors and particle trajectories show good agreement.展开更多
The paper aims to give a comprehensive investigation of the two dimensional deformation of a single bubble in a straight duct and a 90° bend under the zero gravity condition. For this, the two phase flow lattice ...The paper aims to give a comprehensive investigation of the two dimensional deformation of a single bubble in a straight duct and a 90° bend under the zero gravity condition. For this, the two phase flow lattice Boltzmann equation (LBE) model is used. An averaging scheme of boundary condition implementation has been applied and validated. A generalized deformation benchmark has been introduced. By presenting and analyzing the shape of the bubbles moving through the channels, the effects of the all important nondimensional numbers on the bubble deformation are examined thoroughly. It is seen that by increasing the Weber number the rate of the deformation enhances. Besides, because of the velocity dissimilarity between the particles constructing the bubble, the initial coordinates and the diameter of the bubble play a great role in the future behavior of the bubble. The density ratio has a little effect on the shape of the bubble within the assumed range of the density ratio. Moreover, as the Reynolds number or the viscosity ratio is decreased, higher rate of deformation is exhibited. Finally it is found that there is an inverse proportionality between the amplitude and frequency of the bubble deformation.展开更多
While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boun...While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boundary Element Method (CVBEM). However, to date, there has been no reporting of a comparison of computational results between the FVM and the CVBEM in the assessment of flow field characteristics. In this work, the CVBEM is used to develop a flow field vector outcome of ideal fluid flow in a 90-degree bend which is then compared to the computational results from a finite volume model of the same situation. The focus of the modelling comparison in the current work is flow field trajectory vectors of the fluid flow, with respect to vector magnitude and direction. Such a comparison is necessary to validate the development of flow field vectors from the CVBEM and is of interest to many engineering flow problems, specifically groundwater modelling. Comparison of the CVBEM and FVM flow field trajectory vectors for the target problem of ideal flow in a 90-degree bend shows good agreement between the considered methodologies.展开更多
基金The project supported by the Canadian Space Agency (CSA) and the visiting scholar program of the Chinese Academy of Sciences (CAS)
文摘Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In the present study,a set of experimental data of two-phase flow patterns and their transitions in a 90°bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported.Gas and liquid superficial velocities are found to range from (1.0~23.6)m/s for gas and(0.09~0.5)m/s for liquid,respectively.Three major flow patterns, namely slug,slug-annular transitional,and annular flows,are observed in this study.Focusing on the differences between flow patterns in bends and their counterparts in straight pipes,detailed analyses of their characteristics are made.The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes,and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined.
基金supported by National Natural Science Foundation of China (Grant No. 50775194)Shanxi Provincial Natural Science Foundation of China (Grant No. 2011011026-1)
文摘Oil flow through pipe bends is found in many engineering applications. However, up to now, the studies of oil flow field in the pipe bend appear to be relatively sparse, although the oil flow field and the associated losses of pipe bend are very important in practice. In this paper, the relationships between the turbulent flow of hydraulic oil in a bend and the Reynolds number Re and the curvature ratio δare studied by using computational fluid dynamics (CFD). A particular emphasis is put on hydraulic oil, which differs from air or water, flowing through 90° circular-sectional bend, with the purpose of determining the turbulent flow characteristics as well as losses. Three turbulence models, namely, RNG κ-ε model, realizable k-ε model, and Reynolds stress model (RSM), are used respectively. The simulation results in the form of contour and vector plots for all the three turbulence models for pipe bends having curvature ratio of δ=0.5, and the detailed pressure fields and total pressure losses for different Re and δ for RSM are presented. The RSM can predict the stronger secondary flow in the bend better than other models. As Re increases, the pressure gradient changes rapidly, and the pressure magnitude increases at inner and outer wall of the bend. When δ decreases, two transition points or transition zones of pressure gradient arise at inner wall, meanwhile, the transition point moves towards the inlet at outer wall of the bend. Owing to secondary flow, the total pressure loss factor k increases as the bend tightens, on the contrary, as Re increases, factor k decreases due to higher velocity heads, and the rapid change of pressure gradient on the surface of the bend leads to increasing of friction and separation effects, and magnified swirl intensity of secondary flow. A new mathematical model is proposed for predicting pressure loss in terms of Re and δ in order to provide support to the one-dimensional simulation software. The proposed research provides reference for the analysis of oil flow with higher Re in the large bends.
文摘This study presents the numerical evaluation about the impact of flow disturbance near the intrados and extrados regions of the 90 degree bended elbow using CFX for several practical cases where the 90 degree bended upward elbow is located in a proximity to the butterfly valve and the butterfly valve open angle is changed. For the change of a butterfly valve open angle from 60% to 100% and the increase of the distance between a valve and a 90 degree bended elbow, the effect of FAC (Flow-Accelerated Corrosion) in the 90 degree bended elbow may be neglected because the value and distribution of the velocity and shear stress is rapidly decreased comparing with the present status installed in an industry, and the data of 100% valve open (Case 3) and L/D ≈ 5 (Case 4) are very good agreement comparing with the reference data, L/D ≈ 8 (Case 2). The reasons are that flow already maintains a fully developed condition and a steady state in spite of less distance than the reference case, L/D = 8. Therefore, smooth flow fields have approached at a 90 degree bended elbow. Then, the effect of shear stress and vortex is hardly investigated around the intrados area of 90 degree bended elbow.
文摘A pneumatic test rig is built to test a curved 90° square bend in an open-circuit horizontal-to-horizontal suction wind tunnel system. Sand particles are used to represent the solid phase with a wide range of particle diameters. Velocity profiles are constructed by measuring the gas velocity using a 3-hole probe. Flow patterns inside the bend duct are introduced using sparks caused by burning sticks of incense with the air flow inside the piping system for flow visualization purpose. Numerical calculations are performed by Lagrangian-particle tracking model for predicting particle trajectories of dispersed phase, and standard k-ε model for predicting the turbulent gas-solid flows in bends. Comparisons made between the theoretical results and experimental data for the velocity vectors and particle trajectories show good agreement.
文摘The paper aims to give a comprehensive investigation of the two dimensional deformation of a single bubble in a straight duct and a 90° bend under the zero gravity condition. For this, the two phase flow lattice Boltzmann equation (LBE) model is used. An averaging scheme of boundary condition implementation has been applied and validated. A generalized deformation benchmark has been introduced. By presenting and analyzing the shape of the bubbles moving through the channels, the effects of the all important nondimensional numbers on the bubble deformation are examined thoroughly. It is seen that by increasing the Weber number the rate of the deformation enhances. Besides, because of the velocity dissimilarity between the particles constructing the bubble, the initial coordinates and the diameter of the bubble play a great role in the future behavior of the bubble. The density ratio has a little effect on the shape of the bubble within the assumed range of the density ratio. Moreover, as the Reynolds number or the viscosity ratio is decreased, higher rate of deformation is exhibited. Finally it is found that there is an inverse proportionality between the amplitude and frequency of the bubble deformation.
文摘While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boundary Element Method (CVBEM). However, to date, there has been no reporting of a comparison of computational results between the FVM and the CVBEM in the assessment of flow field characteristics. In this work, the CVBEM is used to develop a flow field vector outcome of ideal fluid flow in a 90-degree bend which is then compared to the computational results from a finite volume model of the same situation. The focus of the modelling comparison in the current work is flow field trajectory vectors of the fluid flow, with respect to vector magnitude and direction. Such a comparison is necessary to validate the development of flow field vectors from the CVBEM and is of interest to many engineering flow problems, specifically groundwater modelling. Comparison of the CVBEM and FVM flow field trajectory vectors for the target problem of ideal flow in a 90-degree bend shows good agreement between the considered methodologies.