目的探讨热休克蛋白90α(heat shock protein 90α,Hsp90α)在结肠癌中的表达及潜在的临床价值。方法采用生物信息学和免疫组化法分析结肠癌中Hsp90α的表达水平,及其与临床病理学特征、预后和免疫细胞浸润水平的关系;采用CCK-8细胞增...目的探讨热休克蛋白90α(heat shock protein 90α,Hsp90α)在结肠癌中的表达及潜在的临床价值。方法采用生物信息学和免疫组化法分析结肠癌中Hsp90α的表达水平,及其与临床病理学特征、预后和免疫细胞浸润水平的关系;采用CCK-8细胞增殖实验和平板克隆实验检测敲除Hsp90AA1前后结肠癌细胞的增殖能力。结果生物信息学分析结果显示,Hsp90AA1在结肠癌组织中异常高表达,其表达水平越高,患者预后越差;Hsp90AA1表达与CD4^(+)T细胞(Th2)、CD8^(+)T细胞、髓样抑制细胞、Tregs细胞、中性粒细胞、巨噬细胞、M1巨噬细胞、M2巨噬细胞的浸润水平呈正相关;免疫组化结果显示结肠癌组织中Hsp90α表达明显高于癌旁正常组织,Hsp90α表达与患者性别、肿瘤大小、位置、分化程度、TNM分期、淋巴结转移、脉管癌栓、神经侵犯、远处转移等无关(P>0.05),与结肠癌患者年龄具有相关性(P<0.05)。Hsp90α高表达是影响结肠癌患者预后的独立危险因素。细胞实验结果显示,敲除Hsp90AA1可抑制结肠癌细胞的生长及增殖能力。结论Hsp90α在结肠癌中高表达,可能是结肠癌预后不良的潜在分子学标志物。展开更多
Flexible wings of insects and bio-inspired micro air vehicles generally deform remarkably during flapping flight owing to aerodynamic and inertial forces,which is of highly nonlinear fluid-structure interaction(FSI)...Flexible wings of insects and bio-inspired micro air vehicles generally deform remarkably during flapping flight owing to aerodynamic and inertial forces,which is of highly nonlinear fluid-structure interaction(FSI)problems.To elucidate the novel mechanisms associated with flexible wing aerodynamics in the low Reynolds number regime,we have built up a FSI model of a hawkmoth wing undergoing revolving and made an investigation on the effects of flexible wing deformation on aerodynamic performance of the revolving wing model.To take into account the characteristics of flapping wing kinematics we designed a kinematic model for the revolving wing in two-fold:acceleration and steady rotation,which are based on hovering wing kinematics of hawkmoth,Manduca sexta.Our results show that both aerodynamic and inertial forces demonstrate a pronounced increase during acceleration phase,which results in a significant wing deformation.While the aerodynamic force turns to reduce after the wing acceleration terminates due to the burst and detachment of leading-edge vortices(LEVs),the dynamic wing deformation seem to delay the burst of LEVs and hence to augment the aerodynamic force during and even after the acceleration.During the phase of steady rotation,the flexible wing model generates more ver-tical force at higher angles of attack(40°–60°)but less horizontal force than those of a rigid wing model.This is because the wing twist in spanwise owing to aerodynamic forces results in a reduction in the effective angle of attack at wing tip,which leads to enhancing the aerodynamics performance by increasing the vertical force while reducing the horizontal force.Moreover,our results point out the importance of the fluid-structure interaction in evaluating flexible wing aerodynamics:the wing deformation does play a significant role in enhancing the aerodynamic performances but works differently during acceleration and steady rotation,which is mainly induced by inertial force in acceleration but by aerodynamic forces in steady rotation.展开更多
We consider the problem of inducing withdrawal reflex on a test subject by exposing the subject’s skin to an electromagnetic beam. Heat-sensitive nociceptors in the skin are activated wherever the temperature is abov...We consider the problem of inducing withdrawal reflex on a test subject by exposing the subject’s skin to an electromagnetic beam. Heat-sensitive nociceptors in the skin are activated wherever the temperature is above the activation temperature. Withdrawal reflex occurs when the activated volume reaches a threshold. Previously we studied static beams with 3 types of power density distribution: Gaussian, super-Gaussian, and flat-top. We found that the flaptop is the best and the Gaussian is the worst in their performance with regard to 1) minimizing the time to withdrawal reflex, 2) minimizing the energy consumption and 3) minimizing the maximum temperature increase. The less-than-desirable performance of Gaussian beams is attributed to the uneven distribution of power density resulting in low energy efficiency: near the beam center the high power density does not contribute proportionally to increasing the activated volume;outside the beam effective radius the low power density fails to activate nociceptors. To overcome the drawbacks of Gaussian beams, in this study, we revolve a Gaussian beam around a fixed point to make the power density more uniformly distributed. We optimize the performance over two parameters: the spot size of static beam and the radius of beam revolution. We find that in comparison with a static Gaussian beam, a revolving Gaussian beam can reduce the energy consumption, and at the same time lower the maximum temperature.展开更多
This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the ...This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.展开更多
文摘目的探讨热休克蛋白90α(heat shock protein 90α,Hsp90α)在结肠癌中的表达及潜在的临床价值。方法采用生物信息学和免疫组化法分析结肠癌中Hsp90α的表达水平,及其与临床病理学特征、预后和免疫细胞浸润水平的关系;采用CCK-8细胞增殖实验和平板克隆实验检测敲除Hsp90AA1前后结肠癌细胞的增殖能力。结果生物信息学分析结果显示,Hsp90AA1在结肠癌组织中异常高表达,其表达水平越高,患者预后越差;Hsp90AA1表达与CD4^(+)T细胞(Th2)、CD8^(+)T细胞、髓样抑制细胞、Tregs细胞、中性粒细胞、巨噬细胞、M1巨噬细胞、M2巨噬细胞的浸润水平呈正相关;免疫组化结果显示结肠癌组织中Hsp90α表达明显高于癌旁正常组织,Hsp90α表达与患者性别、肿瘤大小、位置、分化程度、TNM分期、淋巴结转移、脉管癌栓、神经侵犯、远处转移等无关(P>0.05),与结肠癌患者年龄具有相关性(P<0.05)。Hsp90α高表达是影响结肠癌患者预后的独立危险因素。细胞实验结果显示,敲除Hsp90AA1可抑制结肠癌细胞的生长及增殖能力。结论Hsp90α在结肠癌中高表达,可能是结肠癌预后不良的潜在分子学标志物。
基金supported by the Grant-in-Aid for Scientific Research(21360078 and 18100002)Grant-in-Aid for Scientific Research on Innovative Areas(24120007,JSPS)
文摘Flexible wings of insects and bio-inspired micro air vehicles generally deform remarkably during flapping flight owing to aerodynamic and inertial forces,which is of highly nonlinear fluid-structure interaction(FSI)problems.To elucidate the novel mechanisms associated with flexible wing aerodynamics in the low Reynolds number regime,we have built up a FSI model of a hawkmoth wing undergoing revolving and made an investigation on the effects of flexible wing deformation on aerodynamic performance of the revolving wing model.To take into account the characteristics of flapping wing kinematics we designed a kinematic model for the revolving wing in two-fold:acceleration and steady rotation,which are based on hovering wing kinematics of hawkmoth,Manduca sexta.Our results show that both aerodynamic and inertial forces demonstrate a pronounced increase during acceleration phase,which results in a significant wing deformation.While the aerodynamic force turns to reduce after the wing acceleration terminates due to the burst and detachment of leading-edge vortices(LEVs),the dynamic wing deformation seem to delay the burst of LEVs and hence to augment the aerodynamic force during and even after the acceleration.During the phase of steady rotation,the flexible wing model generates more ver-tical force at higher angles of attack(40°–60°)but less horizontal force than those of a rigid wing model.This is because the wing twist in spanwise owing to aerodynamic forces results in a reduction in the effective angle of attack at wing tip,which leads to enhancing the aerodynamics performance by increasing the vertical force while reducing the horizontal force.Moreover,our results point out the importance of the fluid-structure interaction in evaluating flexible wing aerodynamics:the wing deformation does play a significant role in enhancing the aerodynamic performances but works differently during acceleration and steady rotation,which is mainly induced by inertial force in acceleration but by aerodynamic forces in steady rotation.
文摘We consider the problem of inducing withdrawal reflex on a test subject by exposing the subject’s skin to an electromagnetic beam. Heat-sensitive nociceptors in the skin are activated wherever the temperature is above the activation temperature. Withdrawal reflex occurs when the activated volume reaches a threshold. Previously we studied static beams with 3 types of power density distribution: Gaussian, super-Gaussian, and flat-top. We found that the flaptop is the best and the Gaussian is the worst in their performance with regard to 1) minimizing the time to withdrawal reflex, 2) minimizing the energy consumption and 3) minimizing the maximum temperature increase. The less-than-desirable performance of Gaussian beams is attributed to the uneven distribution of power density resulting in low energy efficiency: near the beam center the high power density does not contribute proportionally to increasing the activated volume;outside the beam effective radius the low power density fails to activate nociceptors. To overcome the drawbacks of Gaussian beams, in this study, we revolve a Gaussian beam around a fixed point to make the power density more uniformly distributed. We optimize the performance over two parameters: the spot size of static beam and the radius of beam revolution. We find that in comparison with a static Gaussian beam, a revolving Gaussian beam can reduce the energy consumption, and at the same time lower the maximum temperature.
文摘This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.