The hardness variation of two kinds of alloys with 36 wt pct W content and 7/3, 9/1 Ni-to-Fe ratios during strain aging at 800℃ was studied. The microstructures of the aged alloys were analyzed by X-ray diffraction a...The hardness variation of two kinds of alloys with 36 wt pct W content and 7/3, 9/1 Ni-to-Fe ratios during strain aging at 800℃ was studied. The microstructures of the aged alloys were analyzed by X-ray diffraction and TEM. The results show that the strain aging hardness of W-Ni-Fe ternary alloy with 7/3 Ni-to-Fe ratio decreases monotonically with the increase of aging time. Under the same conditions, the hardness of 9/1 Ni-to-Fe ratio alloy decreases in the initial aging stage, but then increases as aging process goes on. X ray diffraction and TEM analysis show that there is not any precipitation depositing from the alloy with 7/3 Ni-to-Fe ratio during aging. The monotonic decrease in hardness of this alloy during aging process results from the recovery, recrystallization and solid solubility declining. In the alloy of 9/1 Ni-to-Fe ratio, the fine β phase precipitates dispersively during aging which hardens the alloy. The two different kinds of mechanisms (the softening one and the hardening one) decide the hardness variation of the alloy with 9/1 Ni-to-Fe ratio mentioned above.展开更多
In this study, Cu was added as the third additive to lower the sintering temperature of W-Ni-Fe alloy. By adding 2 wt pct Cu, a dense 93W-3.5Ni-l.5Fe-2.0Cu tungsten alloy was obtained by hot-pressing at a low temperat...In this study, Cu was added as the third additive to lower the sintering temperature of W-Ni-Fe alloy. By adding 2 wt pct Cu, a dense 93W-3.5Ni-l.5Fe-2.0Cu tungsten alloy was obtained by hot-pressing at a low temperature of 1573 K which is a process of liquid-phase sintering. As a result, the morphology of W-Ni-Fe alloy changed obviously after the addition of Cu and the alloy had-higher relative density and rupture strength. The mechanism of the densification of W-Ni-Fe-Cu alloy at the low temperature.was then mainly investigated. It was found that, part sintering activators Ni and Fe could exist in liquid form at 1573 K due to the addition of Cu, which made it easy for Ni and Fe to dissolve W and thus the full densification of W-Ni-Fe-Cu alloy at the low temperature was realized.展开更多
MA W-Ni-Fe alloyed powder compact was sintered by microwave technology, and the influence of microwave sintering on consolidation of W-Ni-Fe alloy was studied. The fracture morphology and microstructure of alloys were...MA W-Ni-Fe alloyed powder compact was sintered by microwave technology, and the influence of microwave sintering on consolidation of W-Ni-Fe alloy was studied. The fracture morphology and microstructure of alloys were measured by SEM and metallurgical microscope. The experimental results showed that microwave sintering promoted the densification of MA W-Ni-Fe alloyed powder quickly with the higher heating rate. The density of the sintered samples increased with the increase of sintering temperature, and significant densification shrinkage occured at 1300 ~ 1400°C. The tungsten grain grew rapidly at 1450°C. When the alloy was microwave sintered at 1550°C, the inner structure of alloy is more homogeneous, the average W grain size is about 15 μm, and the relative density of sintered specimen is 99%.展开更多
The microstructural evolution of banded 5A90 A1-Li alloy during superplastic deformation at 475℃ with an initial strain rate of 8× 10^-4 S^-1 was studied using EBSD technique. The results showed that, before def...The microstructural evolution of banded 5A90 A1-Li alloy during superplastic deformation at 475℃ with an initial strain rate of 8× 10^-4 S^-1 was studied using EBSD technique. The results showed that, before deformation, the grain shape appeared to be banded, the most grain boundaries belonged to low-angle boundaries, and the initial sheet had a dominate of { 110}(112) brass texture. During deformation, there were grain growth, grain shape change, misorientation increasing and textural weakening. The fraction of high-angle boundaries increased rapidly once the flow stress reached the peak value. Corresponding deformation mechanism for various stages of deformation was suggested. Dislocation activity was the dominant mechanism in the first stage, then dynamic recrystallization occurred, and grain rotation was expected as an accommodation for grain boundary sliding (GBS). At large strains, GBS was the main mechanism.展开更多
Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution i...Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution in sintering were investigated at different heating rates. The results show that the SPS densification process can be divided into three stages. At the initial unshrinking stage, fast heating generates instantaneous discharge and locally inhomogeneous temperature distribution in solid-state powder particles, enhancing later densification; during the intermediate solid state sintering stage, diffusion is more sufficient in the slow-heated SPS process; at the final transient liquid-phase sintering stage, tungsten grains become sphered and coarsen rapidly, but fast heating helps maintain rather small grain sizes.展开更多
Through the experiment of natural seawater exposure corrosion, the antifouling properties of the plate specimens of 90Cu 10Ni alloy were studied, which were processed by different deformations, annealing treatments an...Through the experiment of natural seawater exposure corrosion, the antifouling properties of the plate specimens of 90Cu 10Ni alloy were studied, which were processed by different deformations, annealing treatments and surface treatments. The results indicate that after exposure corrosion for half a year, the antifouling properties of the specimens are quite different. The specimens processed by suitable deformations, annealing treatment at 650?℃ and pretreatment of surface film possess both good corrosion resistance and antifouling properties. However, the specimens processed by different deformations and annealing treatment at 450?℃ possess lower corrosion resistance, although they are also treated by the pretreatment of surface film; their antifouling properties change with different deformations. The relationships among the corrosion morphology and microstructure with the antifouling property of 90Cu 10Ni alloy are observed under the scanning electron microscopy (SEM).展开更多
X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were usedto investigate the crystallization process of amorphous Al_(90)TM_xCe_(10-x), (atom fraction inpercent; TM = Fe or Ni; x = 3, 5) alloys. Agi...X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were usedto investigate the crystallization process of amorphous Al_(90)TM_xCe_(10-x), (atom fraction inpercent; TM = Fe or Ni; x = 3, 5) alloys. Aging effects were examined by X-ray diffraction. Thestructure corresponding to the prepeak for the amorphous Al_(90)Fe_5Ce_5 alloy is more stable thanthe amorphous matrix, but it is not stable for amorphous Al_(90)Ni_5Ce_5 alloy during the firstcrystallization stage and even decomposes at room temperature. Although both Al-Ni and Al-Fe havestrong chemical bonding, the crystallization onset temperature of amorphous Al-Fe-Ce alloys is muchhigher than that of amorphous Al-Ni-Ce alloys, which is likely caused by the different stability ofthe structure corresponding to the prepeak. The crystallization onset temperature increases as Ce/Niratio increases in amorphous Al_(90)Ni_xCe_(10-x) alloys, whereas it decreases as Ce/Fe ratioincreases in amorphous Al_(90)Fe_xCe_(10-x) alloys. A better atomic packing produces as Ce contentincreases because of the size mismatch in Al-Ni-Ce systems and as Fe content increases because ofthe increasing Fe central structural units.展开更多
The disaccommodation(DA)measurements of initial susceptibility were performed in amorphous Fe_(90-x)Ni_xZr_(10)(x=10,20,30)alloys.The DA was measured for two different amorphous states:as-quenched and pretreated at 53...The disaccommodation(DA)measurements of initial susceptibility were performed in amorphous Fe_(90-x)Ni_xZr_(10)(x=10,20,30)alloys.The DA was measured for two different amorphous states:as-quenched and pretreated at 537 K for 45 min.For all the as- quenched samples,in the isochronal spectra of DA a well defined relaxation peak around 350 K is accompanied by a samll but distinct peak near the Curie temperature of Fe_(90)Zr_(10) phase(T_c=230 K).The reversibility and annealing effect on DA are analyzed within the framework of two-level model.The fits of the theory to the experimental data of reversible relaxation processes gave a spectrum,of activation energies and pre- exponential factor.展开更多
A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigat...A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigated. The results show that the refined microstructure has a variation in the distribution of grain size, shape and texture across the normal direction of the sheet. The surface layer (SL) has fine, nearly equiaxed grains with a rotated cUbeND {001 }(310) orientation, whereas the center layer (CL) has coarse, elongated grains with a portion of a fiber orientation. Increasing static recrystallized temperature results in grain growth in the full thickness, decreasing of grain aspect ratio in the center layer, texture sharpening in the surface layer, but weakening in the center layer as well as decreasing of superplastic elongation. Increasing the annealing temperature also produces an sharpening of the rotated cube {001}(310) component and a decreasing of the a fiber texture in the full thickness of the sheet. The formation mechanisms of recrystallization texture at various temperatures and layers were discussed.展开更多
Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructur...Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructure and mechanicalproperties of the90W-6Ni-4Mn alloys were investigated.SPS technology was used to prepare90W-6Ni-4Mn alloys withrelatively high density and excellent comprehensive performance at1150-1250°C for3min.The90W-6Ni-4Mn alloys consistedof the W phase and theγ-(Ni,Mn,and W)binding phase,and the average grain size was less than10μm.The Rockwell hardness andbending strength of alloys first increased and then decreased with increasing sintering temperature.The best comprehensiveperformance was obtained at1200°C,its hardness and bending strength were HRA68.7and1162.72MPa,respectively.展开更多
The effect of a salicylic Schiff base componnd (Salcn) on the corrosion of AZ91 alloy in 30% ethylene glycol aqueous solution (30% EG/W) was investigated by electrochemical methods. Scanning electron microscope wa...The effect of a salicylic Schiff base componnd (Salcn) on the corrosion of AZ91 alloy in 30% ethylene glycol aqueous solution (30% EG/W) was investigated by electrochemical methods. Scanning electron microscope was used to observe the alloy surface in corrosive solution before and after the addition of inhibitor. There was no significant corrosion inhibition at the room temperature but high inhibition efficiencies were obtained at elevated temperatures due to the formation of chemisorbed inhibitor monolayer. As the inhibitor concentration increased, the inhibition efficiency increased probably due to more inhibitor adsorption on the alloy surface.展开更多
基金This work was supported by the National Natural Science Foundation of China under grant No.59971007.
文摘The hardness variation of two kinds of alloys with 36 wt pct W content and 7/3, 9/1 Ni-to-Fe ratios during strain aging at 800℃ was studied. The microstructures of the aged alloys were analyzed by X-ray diffraction and TEM. The results show that the strain aging hardness of W-Ni-Fe ternary alloy with 7/3 Ni-to-Fe ratio decreases monotonically with the increase of aging time. Under the same conditions, the hardness of 9/1 Ni-to-Fe ratio alloy decreases in the initial aging stage, but then increases as aging process goes on. X ray diffraction and TEM analysis show that there is not any precipitation depositing from the alloy with 7/3 Ni-to-Fe ratio during aging. The monotonic decrease in hardness of this alloy during aging process results from the recovery, recrystallization and solid solubility declining. In the alloy of 9/1 Ni-to-Fe ratio, the fine β phase precipitates dispersively during aging which hardens the alloy. The two different kinds of mechanisms (the softening one and the hardening one) decide the hardness variation of the alloy with 9/1 Ni-to-Fe ratio mentioned above.
文摘In this study, Cu was added as the third additive to lower the sintering temperature of W-Ni-Fe alloy. By adding 2 wt pct Cu, a dense 93W-3.5Ni-l.5Fe-2.0Cu tungsten alloy was obtained by hot-pressing at a low temperature of 1573 K which is a process of liquid-phase sintering. As a result, the morphology of W-Ni-Fe alloy changed obviously after the addition of Cu and the alloy had-higher relative density and rupture strength. The mechanism of the densification of W-Ni-Fe-Cu alloy at the low temperature.was then mainly investigated. It was found that, part sintering activators Ni and Fe could exist in liquid form at 1573 K due to the addition of Cu, which made it easy for Ni and Fe to dissolve W and thus the full densification of W-Ni-Fe-Cu alloy at the low temperature was realized.
文摘MA W-Ni-Fe alloyed powder compact was sintered by microwave technology, and the influence of microwave sintering on consolidation of W-Ni-Fe alloy was studied. The fracture morphology and microstructure of alloys were measured by SEM and metallurgical microscope. The experimental results showed that microwave sintering promoted the densification of MA W-Ni-Fe alloyed powder quickly with the higher heating rate. The density of the sintered samples increased with the increase of sintering temperature, and significant densification shrinkage occured at 1300 ~ 1400°C. The tungsten grain grew rapidly at 1450°C. When the alloy was microwave sintered at 1550°C, the inner structure of alloy is more homogeneous, the average W grain size is about 15 μm, and the relative density of sintered specimen is 99%.
基金Project(51205419)supported by the National Natural Science Foundation of China
文摘The microstructural evolution of banded 5A90 A1-Li alloy during superplastic deformation at 475℃ with an initial strain rate of 8× 10^-4 S^-1 was studied using EBSD technique. The results showed that, before deformation, the grain shape appeared to be banded, the most grain boundaries belonged to low-angle boundaries, and the initial sheet had a dominate of { 110}(112) brass texture. During deformation, there were grain growth, grain shape change, misorientation increasing and textural weakening. The fraction of high-angle boundaries increased rapidly once the flow stress reached the peak value. Corresponding deformation mechanism for various stages of deformation was suggested. Dislocation activity was the dominant mechanism in the first stage, then dynamic recrystallization occurred, and grain rotation was expected as an accommodation for grain boundary sliding (GBS). At large strains, GBS was the main mechanism.
基金Project (2010CB635104) supported by the National Basic Research Program of ChinaProject (2007AA03Z112) supported by the National High-Tech Research and Development Program of China+2 种基金Project (9140A18040709JW1601) supported by the Advanced Research Fund of DOD, ChinaProject (2009ZZ0019) supported by the Fundamental Research Funds for the Central Universities, ChinaProject (NCET-10-0364) supported by the Program for New Century Excellent Talents in University, China
文摘Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution in sintering were investigated at different heating rates. The results show that the SPS densification process can be divided into three stages. At the initial unshrinking stage, fast heating generates instantaneous discharge and locally inhomogeneous temperature distribution in solid-state powder particles, enhancing later densification; during the intermediate solid state sintering stage, diffusion is more sufficient in the slow-heated SPS process; at the final transient liquid-phase sintering stage, tungsten grains become sphered and coarsen rapidly, but fast heating helps maintain rather small grain sizes.
文摘Through the experiment of natural seawater exposure corrosion, the antifouling properties of the plate specimens of 90Cu 10Ni alloy were studied, which were processed by different deformations, annealing treatments and surface treatments. The results indicate that after exposure corrosion for half a year, the antifouling properties of the specimens are quite different. The specimens processed by suitable deformations, annealing treatment at 650?℃ and pretreatment of surface film possess both good corrosion resistance and antifouling properties. However, the specimens processed by different deformations and annealing treatment at 450?℃ possess lower corrosion resistance, although they are also treated by the pretreatment of surface film; their antifouling properties change with different deformations. The relationships among the corrosion morphology and microstructure with the antifouling property of 90Cu 10Ni alloy are observed under the scanning electron microscopy (SEM).
基金This work was financially supported by the Natural Science Foundation of Shandong Province (No. Y2000b02)
文摘X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were usedto investigate the crystallization process of amorphous Al_(90)TM_xCe_(10-x), (atom fraction inpercent; TM = Fe or Ni; x = 3, 5) alloys. Aging effects were examined by X-ray diffraction. Thestructure corresponding to the prepeak for the amorphous Al_(90)Fe_5Ce_5 alloy is more stable thanthe amorphous matrix, but it is not stable for amorphous Al_(90)Ni_5Ce_5 alloy during the firstcrystallization stage and even decomposes at room temperature. Although both Al-Ni and Al-Fe havestrong chemical bonding, the crystallization onset temperature of amorphous Al-Fe-Ce alloys is muchhigher than that of amorphous Al-Ni-Ce alloys, which is likely caused by the different stability ofthe structure corresponding to the prepeak. The crystallization onset temperature increases as Ce/Niratio increases in amorphous Al_(90)Ni_xCe_(10-x) alloys, whereas it decreases as Ce/Fe ratioincreases in amorphous Al_(90)Fe_xCe_(10-x) alloys. A better atomic packing produces as Ce contentincreases because of the size mismatch in Al-Ni-Ce systems and as Fe content increases because ofthe increasing Fe central structural units.
文摘The disaccommodation(DA)measurements of initial susceptibility were performed in amorphous Fe_(90-x)Ni_xZr_(10)(x=10,20,30)alloys.The DA was measured for two different amorphous states:as-quenched and pretreated at 537 K for 45 min.For all the as- quenched samples,in the isochronal spectra of DA a well defined relaxation peak around 350 K is accompanied by a samll but distinct peak near the Curie temperature of Fe_(90)Zr_(10) phase(T_c=230 K).The reversibility and annealing effect on DA are analyzed within the framework of two-level model.The fits of the theory to the experimental data of reversible relaxation processes gave a spectrum,of activation energies and pre- exponential factor.
基金Project(51205419)supported by the National Natural Science Foundation of China
文摘A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigated. The results show that the refined microstructure has a variation in the distribution of grain size, shape and texture across the normal direction of the sheet. The surface layer (SL) has fine, nearly equiaxed grains with a rotated cUbeND {001 }(310) orientation, whereas the center layer (CL) has coarse, elongated grains with a portion of a fiber orientation. Increasing static recrystallized temperature results in grain growth in the full thickness, decreasing of grain aspect ratio in the center layer, texture sharpening in the surface layer, but weakening in the center layer as well as decreasing of superplastic elongation. Increasing the annealing temperature also produces an sharpening of the rotated cube {001}(310) component and a decreasing of the a fiber texture in the full thickness of the sheet. The formation mechanisms of recrystallization texture at various temperatures and layers were discussed.
基金Projects(51464010,51461014)supported by the National Natural Science Foundation of ChinaProject(20165207)supported by the Natural Science Foundation of Hainan Province,China
文摘Tungsten heavy alloys(90W-6Ni-4Mn)were prepared through spark plasma sintering(SPS)using micron-sized W,Ni,and Mn powders without ball milling as raw materials.The effects of sintering temperature on the microstructure and mechanicalproperties of the90W-6Ni-4Mn alloys were investigated.SPS technology was used to prepare90W-6Ni-4Mn alloys withrelatively high density and excellent comprehensive performance at1150-1250°C for3min.The90W-6Ni-4Mn alloys consistedof the W phase and theγ-(Ni,Mn,and W)binding phase,and the average grain size was less than10μm.The Rockwell hardness andbending strength of alloys first increased and then decreased with increasing sintering temperature.The best comprehensiveperformance was obtained at1200°C,its hardness and bending strength were HRA68.7and1162.72MPa,respectively.
基金the Research Council of the University of Mohaghegh Ardabili for its financial support of this study
文摘The effect of a salicylic Schiff base componnd (Salcn) on the corrosion of AZ91 alloy in 30% ethylene glycol aqueous solution (30% EG/W) was investigated by electrochemical methods. Scanning electron microscope was used to observe the alloy surface in corrosive solution before and after the addition of inhibitor. There was no significant corrosion inhibition at the room temperature but high inhibition efficiencies were obtained at elevated temperatures due to the formation of chemisorbed inhibitor monolayer. As the inhibitor concentration increased, the inhibition efficiency increased probably due to more inhibitor adsorption on the alloy surface.