期刊文献+
共找到746篇文章
< 1 2 38 >
每页显示 20 50 100
High-order harmonic generation of ZnO crystals in chirped and static electric fields
1
作者 张玲玉 何永林 +5 位作者 谢卓璇 高芳艳 徐清芸 葛鑫磊 罗香怡 郭静 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期335-343,共9页
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce... High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed. 展开更多
关键词 high-order harmonic generation the semiconductor Bloch equation k-resolved inter-band harmonic spectrum four-step semiclassical model
下载PDF
On numerical stationary distribution of overdamped Langevin equation in harmonic system
2
作者 李德彰 杨小宝 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期209-215,共7页
Efficient numerical algorithm for stochastic differential equation has been an important object in the research of statistical physics and mathematics for a long time.In this work we study the highly accurate numerica... Efficient numerical algorithm for stochastic differential equation has been an important object in the research of statistical physics and mathematics for a long time.In this work we study the highly accurate numerical algorithm for the overdamped Langevin equation.In particular,our interest is in the behaviour of the numerical schemes for solving the overdamped Langevin equation in the harmonic system.Based on the large friction limit of the underdamped Langevin dynamic scheme,three algorithms for overdamped Langevin equation are obtained.We derive the explicit expression of the stationary distribution of each algorithm by analysing the discrete time trajectory for both one-dimensional case and multi-dimensional case.The accuracy of the stationary distribution of each algorithm is illustrated by comparing with the exact Boltzmann distribution.Our results demonstrate that the“BAOA-limit”algorithm generates an accurate distribution of the harmonic system in a canonical ensemble,within a stable range of time interval.The other algorithms do not produce the exact distribution of the harmonic system. 展开更多
关键词 numerical stationary distribution overdamped Langevin equation exact solution harmonic system
下载PDF
UNIQUENESS FOR SOLUTIONS OF NONHOMOGENEOUS A -HARMONIC EQUATIONS WITH VERY WEAK BOUNDARY VALUES 被引量:2
3
作者 高红亚 叶玉全 谢素英 《Journal of Shanghai Jiaotong university(Science)》 EI 2001年第1期78-80,共3页
A uniqueness result for nonhomogeneous quasilinear elliptic partial differential equations with very weak boundary values was proved.
关键词 UNIQUENESS A harmonic equation weak solution very weak boundary values
下载PDF
Spectral Method for Three-Dimensional Nonlinear Klein-Gordon Equation by Using Generalized Laguerre and Spherical Harmonic Functions 被引量:3
4
作者 Xiao-Yong Zhang Ben-Yu Guo Yu-Jian Jiao 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2009年第1期43-64,共22页
In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve ... In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry. 展开更多
关键词 Generalized Laguerre-spherical harmonic spectral method Cauchy problem of nonlinear Klein-Gordon equation.
下载PDF
Spherical harmonics method for neutron transport equation based on unstructured-meshes 被引量:5
5
作者 CAOLiang-Zhi WU-Hong-Chun 《Nuclear Science and Techniques》 SCIE CAS CSCD 2004年第6期335-339,共5页
Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical ha... Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well. 展开更多
关键词 有限元 中子传输方程 球形谐函数 无结构网 偏微分方程
下载PDF
ON VERY WEAK SOLUTIONS OF A-HARMONICEQUATION WITH VERY WEAK BOUNDARYVALUES 被引量:2
6
作者 高红亚 叶玉全 谢素英 《Acta Mathematica Scientia》 SCIE CSCD 2002年第1期41-46,共6页
In this paper,the following result is given by using Hodge decomposition: There exists r(0) = r(0)(n,p,a,b), such that if u is an element of W-loc(1,r)(Omega) is a very weak solution of (1.1),with C max{1,p - 1} < ... In this paper,the following result is given by using Hodge decomposition: There exists r(0) = r(0)(n,p,a,b), such that if u is an element of W-loc(1,r)(Omega) is a very weak solution of (1.1),with C max{1,p - 1} < r < p and u is an element of W-0(1,r)(Omega;partial derivativeOmega\E) where E subset of partial derivativeOmega is a closed set and small in an appropriate capacity sense, then u = 0, a.e. in Omega provided that r(0) < r < p. 展开更多
关键词 a-harmonic equation very weak solution UNIQUENESS Hodge decomposition
下载PDF
Exact Radial Solution of the Non-relativistic Schrdinger Equation for the Helium Atom with the Potential Harmonic Method
7
作者 WANG Yi-xuan BU Yu-xiang LIU Cheng-bu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2000年第3期213-217,共5页
We proposed a simple potential harmonic(PH) scheme for calculating the non\|relativistic radial correlation energies of atomic systems. The scheme was applied to the low\|lying \%n\%\+1\%S\%(\%n\%=1,2) and \%n\%\+3\%... We proposed a simple potential harmonic(PH) scheme for calculating the non\|relativistic radial correlation energies of atomic systems. The scheme was applied to the low\|lying \%n\%\+1\%S\%(\%n\%=1,2) and \%n\%\+3\%S\%(\%n\%=2,3) states of the helium atom. The results exhibit a very stable convergence characterization in both the angular and radial directions with PH and generalized Laguerre functions(GLF) respectively, even though the method is non\|variational one. The ninth significant figure of the non\|relativistic radial energy(NRE) calculated for the ground state exactly agrees with that of the most accurate literature data from the modified configuration interaction method. The convergent NRE′s for the excited states 2\+1\%S\%, 2\+3\%S\% and 3\+3\%S\% with the similar accuracy were also obtained. 展开更多
关键词 Potential harmonic Radial limit Schrdinger equation Helium atom
下载PDF
High-gain adaptive regulator for a string equation with uncertain harmonic disturbance under boundary output feedback control
8
作者 Baozhu GUO, Wei GUO(Academy of Mathematics and System Sciences, Academia Sinica, Beijing 100080, China) 《控制理论与应用(英文版)》 EI 2003年第1期35-42,共8页
This paper considers the boundary stabilization and parameter estimation of a one-dimensional wave equation in the case when one end is fixed and control and harmonic disturbance with uncertain amplitude are input at ... This paper considers the boundary stabilization and parameter estimation of a one-dimensional wave equation in the case when one end is fixed and control and harmonic disturbance with uncertain amplitude are input at another end. A high-gain adaptive regulator is designed in terms of measured collocated end velocity. The existence and uniqueness of the classical solution of the closed-loop system is proven. It is shown that the state of the system approaches the standstill as time goes to infinity and meanwhile , the estimated parameter converges to the unknown parameter. 展开更多
关键词 String equation Adaptive reguktor harmonic disturbance rejection
下载PDF
Fully discrete Jacobi-spherical harmonic spectral method for Navier-Stokes equations
9
作者 黄伟 郭本瑜 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第4期453-476,共24页
A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The propo... A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The proposed method is also applicable to other problems in spherical geometry. 展开更多
关键词 fully discrete Jacobi-spherical harmonic spectral method Navier-Stokes equations in a ball mixed coordinates
下载PDF
Generalized Harmonic Oscillator and the Schrdinger Equation with Position-Dependent Mass
10
作者 JU Guo-Xing CAI Chang-Ying REN Zhong-Zhou 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第5期797-802,共6页
We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue a... We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties corresponding effective potentials for several mass functions, for the system with PDM are also discussed. We give the the systems with such potentials are isospectral to the usual harmonic oscillator. 展开更多
关键词 generalized harmonic oscillator Schr6dinger equation position-dependent mass coherent state
下载PDF
1/3 PURE SUB-HARMONIC SOLUTION AND FRACTAL CHARACTERISTIC OF TRANSIENT PROCESS FOR DUFFING'S EQUATION
11
作者 徐玉秀 胡海岩 闻邦椿 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第9期1171-1176,共6页
The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-har... The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-harmonic frequencies was found. The asymptotical stability of the subharmonic resonances and the sensitivity of the amplitude responses to the variation of damping coefficient were examined. Then, the subharmonic resonances were analyzed by using the techniques from the general fractal theory. The analysis indicates that the sensitive dimensions of the system time-field responses show sensitivity to the conditions of changed initial perturbation, changed damping coefficient or the amplitude of excitation, thus the sensitive dimension can clearly describe the characteristic of the transient process of the subharmonic resonances. 展开更多
关键词 Duffing's equation SUB-harmonic transient process fractal characteristic sensitive dimension
下载PDF
Extremum Principle for Very Weak Solutions of A-Harmonic Equation with Weight
12
作者 Hong-Ya Gao Chao Liu Yu Zhang 《Advances in Pure Mathematics》 2011年第4期235-237,共3页
Extremum principle for very weak solutions of A-harmonic equation div A(x,▽u)=0 is obtained, where the operator A:Ω × Rn→Rnsatisfies some coercivity and controllable growth conditions with Mucken-houpt weight.
关键词 A-harmonic equation Muckenhoupt WEIGHT Extremum PRINCIPLE Hodge DECOMPOSITION
下载PDF
REGULARITY FOR VERY WEAK SOLUTIONS TO A-HARMONIC EQUATION
13
作者 Liu Lin Gao Hongya 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第3期343-349,共7页
In this paper, the following result is given by using Hodge decomposition and weak reverse Holder inequality: For every r1 with P-(2^n+1 100^n^2 p(2^3+n/(P-1)+1)b/a)^-1〈r1〈p,there exists the exponent r2 =... In this paper, the following result is given by using Hodge decomposition and weak reverse Holder inequality: For every r1 with P-(2^n+1 100^n^2 p(2^3+n/(P-1)+1)b/a)^-1〈r1〈p,there exists the exponent r2 = r2(n, r1,p) 〉 p, such that for every very weak solution u∈W^1r1,loc(Ω) to A-harmonic equation, u also belongs to W^1r2,loc(Ω) . In particular, u is the weak solution to A-harmonic equation in the usual sense. 展开更多
关键词 A-harmonic equation very weak solution Hodge decomposition weak reverse Holder inequality.
下载PDF
The spin-one Duffin Kemmer Petiau equation in the presence of pseudo-harmonic oscillatory ring-shaped potential
14
作者 H.Hassanabadi M.Kamali Physics 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期107-111,共5页
The Duffin-Kemmer-Petiau equation (DKP) is studied in the presence of a pseudo-harmonic oscillatory ring-shaped potential in (1 + 3)-dimensional space-time for spin-one particles. The exact energy eigenvalues and... The Duffin-Kemmer-Petiau equation (DKP) is studied in the presence of a pseudo-harmonic oscillatory ring-shaped potential in (1 + 3)-dimensional space-time for spin-one particles. The exact energy eigenvalues and the eigenfunctions are obtained using the Nikiforov-Uvarov method. 展开更多
关键词 DKP equation pseudo-harmonic oscillatory ring-shaped potential Nikiforov-Uvarov method en-ergy eigenvalues eigenfunctions
下载PDF
Interference of harmonics emitted by different tunneling momentum channels in laser fields
15
作者 Ling-Yu Zhang Zhuo-Xuan Xie +2 位作者 Can Wang Xin-Lei Ge Jing Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期366-372,共7页
By numerically solving the semiconductor Bloch equation(SBEs),we theoretically study the high-harmonic generation of ZnO crystals driven by one-color and two-color intense laser pulses.The results show the enhancement... By numerically solving the semiconductor Bloch equation(SBEs),we theoretically study the high-harmonic generation of ZnO crystals driven by one-color and two-color intense laser pulses.The results show the enhancement of harmonics and the cut-off remains the same in the two-color field,which can be explained by the recollision trajectories and electron excitation from multi-channels.Based on the quantum path analysis,we investigate contribution of different ranges of the crystal momentum k of ZnO to the harmonic yield,and find that in two-color laser fields,the intensity of the harmonic yield of different ranges from the crystal momentum makes a big difference and the harmonic intensity is depressed from all k channels,which is related to the interferences between harmonics from symmetric k channels. 展开更多
关键词 HIGH-ORDER harmonic generation the semiconductor BLOCH equation k-resolved inter-band harmonic
下载PDF
The Jaffa Transform for Hessian Matrix Systems and the Laplace Equation
16
作者 Daniel A. Jaffa 《Journal of Applied Mathematics and Physics》 2024年第1期98-125,共28页
Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ... Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation. 展开更多
关键词 Hessian Matrices Jacobian Matrices Laplace equation Linear Partial Differential equations Systems of Partial Differential equations harmonic Functions Incompressible and Irrotational Fluid Mechanics
下载PDF
Numerical Study of the Vibrations of Beams with Variable Stiffness under Impulsive or Harmonic Loading
17
作者 Moussa Sali Fabien Kenmogne +1 位作者 Jean Bertin Nkibeu Abdou Njifenjou 《World Journal of Engineering and Technology》 2024年第2期401-425,共25页
The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho... The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%. 展开更多
关键词 Successive Approximations Method Direct Integration Differential equations Beams of Variable Stiffness Quadratic Parabola Impulse and harmonic Loads
下载PDF
Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
18
作者 梁畅通 张晶晶 李鹏程 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期205-211,共7页
Frequency-comb emission via high-order harmonic generation(HHG)provides an alternative method for the coherent vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)radiation at ultrahigh repetition rates.In particular,t... Frequency-comb emission via high-order harmonic generation(HHG)provides an alternative method for the coherent vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)radiation at ultrahigh repetition rates.In particular,the temporal and spectral features of the HHG were shown to carry profound insight into frequency-comb emission dynamics.Here we present an ab initio investigation of the temporal and spectral coherence of the frequency comb emitted in HHG of He atom driven by few-cycle pulse trains.We find that the emission of frequency combs features a destructive and constructive coherences caused by the phase interference of HHG,leading to suppression and enhancement of frequency-comb emission.The results reveal intriguing and substantially different nonlinear optical response behaviors for frequency-comb emission via HHG.The dynamical origin of frequency-comb emission is clarified by analyzing the phase coherence in HHG processes in detail.Our results provide fresh insight into the experimental realization of selective enhancement of frequency comb in the VUV–XUV regimes. 展开更多
关键词 high-order harmonic generation frequency comb time-dependent Schro¨dinger equation intense laser field systems
下载PDF
Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre–Gaussian beam with nonzero orbital angular momentum
19
作者 韩嘉鑫 管仲 +1 位作者 汪倍羽 金成 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期98-107,共10页
We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger ... We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger equation(TDSE).We show that the QRS perfectly agrees with the TDSE under the favorable phase-matching condition,and the QRS can accurately predict the main features in the spatial profiles of vortex HHG if the phase-matching condition is not good.We uncover that harmonic emissions from short and long trajectories are adjusted by the phase-matching condition through the time-frequency analysis and the QRS can simulate the vortex HHG accurately only when the interference between two trajectories is absent.This work confirms that it is an efficient way to employ the QRS model in the single-atom response for precisely simulating the macroscopic vortex HHG. 展开更多
关键词 high-order harmonic generation quantitative rescattering model time-dependent Schr?dinger equation macroscopic propagation orbital angular momentum Laguerre–Gaussian beam
下载PDF
Adequate Closed Form Wave Solutions to the Generalized KdV Equation in Mathematical Physics
20
作者 Md. Munnu Miah Md. Al Amin Meia +1 位作者 Md. Matiur Rahman Sarker Ahammodullah Hasan 《Journal of Applied Mathematics and Physics》 2024年第6期2069-2082,共14页
In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ... In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs. 展开更多
关键词 The Generalized KdV equation The exp(-τ(ξ)) -Expansion Method Travelling Wave Solitary Wave
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部