In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve ...In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.展开更多
Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical ha...Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.展开更多
In this paper,the following result is given by using Hodge decomposition: There exists r(0) = r(0)(n,p,a,b), such that if u is an element of W-loc(1,r)(Omega) is a very weak solution of (1.1),with C max{1,p - 1} < ...In this paper,the following result is given by using Hodge decomposition: There exists r(0) = r(0)(n,p,a,b), such that if u is an element of W-loc(1,r)(Omega) is a very weak solution of (1.1),with C max{1,p - 1} < r < p and u is an element of W-0(1,r)(Omega;partial derivativeOmega\E) where E subset of partial derivativeOmega is a closed set and small in an appropriate capacity sense, then u = 0, a.e. in Omega provided that r(0) < r < p.展开更多
We proposed a simple potential harmonic(PH) scheme for calculating the non\|relativistic radial correlation energies of atomic systems. The scheme was applied to the low\|lying \%n\%\+1\%S\%(\%n\%=1,2) and \%n\%\+3\%...We proposed a simple potential harmonic(PH) scheme for calculating the non\|relativistic radial correlation energies of atomic systems. The scheme was applied to the low\|lying \%n\%\+1\%S\%(\%n\%=1,2) and \%n\%\+3\%S\%(\%n\%=2,3) states of the helium atom. The results exhibit a very stable convergence characterization in both the angular and radial directions with PH and generalized Laguerre functions(GLF) respectively, even though the method is non\|variational one. The ninth significant figure of the non\|relativistic radial energy(NRE) calculated for the ground state exactly agrees with that of the most accurate literature data from the modified configuration interaction method. The convergent NRE′s for the excited states 2\+1\%S\%, 2\+3\%S\% and 3\+3\%S\% with the similar accuracy were also obtained.展开更多
This paper considers the boundary stabilization and parameter estimation of a one-dimensional wave equation in the case when one end is fixed and control and harmonic disturbance with uncertain amplitude are input at ...This paper considers the boundary stabilization and parameter estimation of a one-dimensional wave equation in the case when one end is fixed and control and harmonic disturbance with uncertain amplitude are input at another end. A high-gain adaptive regulator is designed in terms of measured collocated end velocity. The existence and uniqueness of the classical solution of the closed-loop system is proven. It is shown that the state of the system approaches the standstill as time goes to infinity and meanwhile , the estimated parameter converges to the unknown parameter.展开更多
A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The propo...A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The proposed method is also applicable to other problems in spherical geometry.展开更多
We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue a...We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties corresponding effective potentials for several mass functions, for the system with PDM are also discussed. We give the the systems with such potentials are isospectral to the usual harmonic oscillator.展开更多
The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-har...The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-harmonic frequencies was found. The asymptotical stability of the subharmonic resonances and the sensitivity of the amplitude responses to the variation of damping coefficient were examined. Then, the subharmonic resonances were analyzed by using the techniques from the general fractal theory. The analysis indicates that the sensitive dimensions of the system time-field responses show sensitivity to the conditions of changed initial perturbation, changed damping coefficient or the amplitude of excitation, thus the sensitive dimension can clearly describe the characteristic of the transient process of the subharmonic resonances.展开更多
Extremum principle for very weak solutions of A-harmonic equation div A(x,▽u)=0 is obtained, where the operator A:Ω × Rn→Rnsatisfies some coercivity and controllable growth conditions with Mucken-houpt weight.
In this paper, the following result is given by using Hodge decomposition and weak reverse Holder inequality: For every r1 with P-(2^n+1 100^n^2 p(2^3+n/(P-1)+1)b/a)^-1〈r1〈p,there exists the exponent r2 =...In this paper, the following result is given by using Hodge decomposition and weak reverse Holder inequality: For every r1 with P-(2^n+1 100^n^2 p(2^3+n/(P-1)+1)b/a)^-1〈r1〈p,there exists the exponent r2 = r2(n, r1,p) 〉 p, such that for every very weak solution u∈W^1r1,loc(Ω) to A-harmonic equation, u also belongs to W^1r2,loc(Ω) . In particular, u is the weak solution to A-harmonic equation in the usual sense.展开更多
The Duffin-Kemmer-Petiau equation (DKP) is studied in the presence of a pseudo-harmonic oscillatory ring-shaped potential in (1 + 3)-dimensional space-time for spin-one particles. The exact energy eigenvalues and...The Duffin-Kemmer-Petiau equation (DKP) is studied in the presence of a pseudo-harmonic oscillatory ring-shaped potential in (1 + 3)-dimensional space-time for spin-one particles. The exact energy eigenvalues and the eigenfunctions are obtained using the Nikiforov-Uvarov method.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
A weak solution to the heat flow problems is constructed.Nonuniqueness results of such solutions are also shown when the first data is a weak solution to the Euler Lagrange equation but not a weakly stationary soluti...A weak solution to the heat flow problems is constructed.Nonuniqueness results of such solutions are also shown when the first data is a weak solution to the Euler Lagrange equation but not a weakly stationary solution to it.展开更多
The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersi...The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersingular integral equation with the map x=cot(θ/2). Second, we initiate the study of the multiscale Galerkin method for the 2π-periodic hypersingular integral equation. The trigonometric wavelets are used as trial functions. Consequently, the 2j+1 × 2j+1 stiffness matrix Kj can be partitioned j×j block matrices. Furthermore, these block matrices are zeros except main diagonal block matrices. These main diagonal block matrices are symmetrical and circulant matrices, and hence the solution of the associated linear algebraic system can be solved with the fast Fourier transform and the inverse fast Fourier transform instead of the inverse matrix. Finally, we provide several numerical examples to demonstrate our method has good accuracy even though the exact solutions are multi-peak and almost singular.展开更多
This paper is concerned with the harmonic equation(P;) : ?u = 0, u > 0 in B;and ?u/?ν+((n-2)/2)u =((n-2)/2) Ku;on S;where B;is the unit ball in R;, n ≥ 4 with Euclidean metric g;, ?B;= S;is its boundary, K is...This paper is concerned with the harmonic equation(P;) : ?u = 0, u > 0 in B;and ?u/?ν+((n-2)/2)u =((n-2)/2) Ku;on S;where B;is the unit ball in R;, n ≥ 4 with Euclidean metric g;, ?B;= S;is its boundary, K is a function on S;and ε is a small positive parameter. We construct solutions of the subcritical equation(P;) which blow up at one critical point of K. We give also a sufficient condition on the function K to ensure the nonexistence of solutions for(P;) which blow up at one point. Finally, we prove a nonexistence result of single peaked solutions for the supercritical equation(P;).展开更多
Specific nonequilibrium states of the quantum harmonic oscillator described by the Lindblad equation have been hereby suggested. This equation makes it possible to determine time-varying effects produced by statistica...Specific nonequilibrium states of the quantum harmonic oscillator described by the Lindblad equation have been hereby suggested. This equation makes it possible to determine time-varying effects produced by statistical operator or statistical matrix. Thus, respective representation-varied equilibrium statistical matrixes have been found. Specific mean value equations have been found and their equilibrium solutions have been obtained.展开更多
The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose bounda...The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose boundaries are defined by a generalized version of the so-called “superformula” introduced by Gielis. A dedicated numerical procedure based on the computer algebra system Mathematica? is developed in order to validate the proposed methodology. In this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained.展开更多
This paper is devoted to the study of second-order Duffing equation with singularity at the origin, where? tends to positive infinity as , and the primitive function as . By applying the phase-plane analysis methods a...This paper is devoted to the study of second-order Duffing equation with singularity at the origin, where? tends to positive infinity as , and the primitive function as . By applying the phase-plane analysis methods and Poincaré-Bohl theorem, we obtain the existence of harmonic solutions of the given equation under a kind of nonresonance condition for the time map.展开更多
Efficient numerical algorithm for stochastic differential equation has been an important object in the research of statistical physics and mathematics for a long time.In this work we study the highly accurate numerica...Efficient numerical algorithm for stochastic differential equation has been an important object in the research of statistical physics and mathematics for a long time.In this work we study the highly accurate numerical algorithm for the overdamped Langevin equation.In particular,our interest is in the behaviour of the numerical schemes for solving the overdamped Langevin equation in the harmonic system.Based on the large friction limit of the underdamped Langevin dynamic scheme,three algorithms for overdamped Langevin equation are obtained.We derive the explicit expression of the stationary distribution of each algorithm by analysing the discrete time trajectory for both one-dimensional case and multi-dimensional case.The accuracy of the stationary distribution of each algorithm is illustrated by comparing with the exact Boltzmann distribution.Our results demonstrate that the“BAOA-limit”algorithm generates an accurate distribution of the harmonic system in a canonical ensemble,within a stable range of time interval.The other algorithms do not produce the exact distribution of the harmonic system.展开更多
基金supported in part by NSF of China N.10871131The Science and Technology Commission of Shanghai Municipality,Grant N.075105118+1 种基金Shanghai Leading Academic Discipline Project N.T0401Fund for E-institute of Shanghai Universities N.E03004.
文摘In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.
基金Supported by pre-research fund of State Key Laboratory (51479080201 JW0802)
文摘Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.
文摘In this paper,the following result is given by using Hodge decomposition: There exists r(0) = r(0)(n,p,a,b), such that if u is an element of W-loc(1,r)(Omega) is a very weak solution of (1.1),with C max{1,p - 1} < r < p and u is an element of W-0(1,r)(Omega;partial derivativeOmega\E) where E subset of partial derivativeOmega is a closed set and small in an appropriate capacity sense, then u = 0, a.e. in Omega provided that r(0) < r < p.
基金Supported by the National Natural Science Foundation of China(No. 2 970 30 0 3)
文摘We proposed a simple potential harmonic(PH) scheme for calculating the non\|relativistic radial correlation energies of atomic systems. The scheme was applied to the low\|lying \%n\%\+1\%S\%(\%n\%=1,2) and \%n\%\+3\%S\%(\%n\%=2,3) states of the helium atom. The results exhibit a very stable convergence characterization in both the angular and radial directions with PH and generalized Laguerre functions(GLF) respectively, even though the method is non\|variational one. The ninth significant figure of the non\|relativistic radial energy(NRE) calculated for the ground state exactly agrees with that of the most accurate literature data from the modified configuration interaction method. The convergent NRE′s for the excited states 2\+1\%S\%, 2\+3\%S\% and 3\+3\%S\% with the similar accuracy were also obtained.
文摘This paper considers the boundary stabilization and parameter estimation of a one-dimensional wave equation in the case when one end is fixed and control and harmonic disturbance with uncertain amplitude are input at another end. A high-gain adaptive regulator is designed in terms of measured collocated end velocity. The existence and uniqueness of the classical solution of the closed-loop system is proven. It is shown that the state of the system approaches the standstill as time goes to infinity and meanwhile , the estimated parameter converges to the unknown parameter.
基金Project supported by the National Natural Science Foundation of China(No.10771142)Science and Technology Commission of Shanghai Municipality(No.75105118)+2 种基金Shanghai Leading Academic Discipline Projects(Nos.T0401 and J50101)Fund for E-institutes of Universities in Shanghai(No.E03004)and Innovative Foundation of Shanghai University(No.A.10-0101-07-408)
文摘A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The proposed method is also applicable to other problems in spherical geometry.
基金supported by the National Natural Science Foundation of China under Grant Nos.10125521 and 60371013the 973 National Basic Pesearch and Development Program of China under Contract No.G2000077400
文摘We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties corresponding effective potentials for several mass functions, for the system with PDM are also discussed. We give the the systems with such potentials are isospectral to the usual harmonic oscillator.
基金Project supported by the National Natural Science Foundation of China (No.50275024)
文摘The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-harmonic frequencies was found. The asymptotical stability of the subharmonic resonances and the sensitivity of the amplitude responses to the variation of damping coefficient were examined. Then, the subharmonic resonances were analyzed by using the techniques from the general fractal theory. The analysis indicates that the sensitive dimensions of the system time-field responses show sensitivity to the conditions of changed initial perturbation, changed damping coefficient or the amplitude of excitation, thus the sensitive dimension can clearly describe the characteristic of the transient process of the subharmonic resonances.
文摘Extremum principle for very weak solutions of A-harmonic equation div A(x,▽u)=0 is obtained, where the operator A:Ω × Rn→Rnsatisfies some coercivity and controllable growth conditions with Mucken-houpt weight.
文摘In this paper, the following result is given by using Hodge decomposition and weak reverse Holder inequality: For every r1 with P-(2^n+1 100^n^2 p(2^3+n/(P-1)+1)b/a)^-1〈r1〈p,there exists the exponent r2 = r2(n, r1,p) 〉 p, such that for every very weak solution u∈W^1r1,loc(Ω) to A-harmonic equation, u also belongs to W^1r2,loc(Ω) . In particular, u is the weak solution to A-harmonic equation in the usual sense.
文摘The Duffin-Kemmer-Petiau equation (DKP) is studied in the presence of a pseudo-harmonic oscillatory ring-shaped potential in (1 + 3)-dimensional space-time for spin-one particles. The exact energy eigenvalues and the eigenfunctions are obtained using the Nikiforov-Uvarov method.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
文摘A weak solution to the heat flow problems is constructed.Nonuniqueness results of such solutions are also shown when the first data is a weak solution to the Euler Lagrange equation but not a weakly stationary solution to it.
文摘The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersingular integral equation with the map x=cot(θ/2). Second, we initiate the study of the multiscale Galerkin method for the 2π-periodic hypersingular integral equation. The trigonometric wavelets are used as trial functions. Consequently, the 2j+1 × 2j+1 stiffness matrix Kj can be partitioned j×j block matrices. Furthermore, these block matrices are zeros except main diagonal block matrices. These main diagonal block matrices are symmetrical and circulant matrices, and hence the solution of the associated linear algebraic system can be solved with the fast Fourier transform and the inverse fast Fourier transform instead of the inverse matrix. Finally, we provide several numerical examples to demonstrate our method has good accuracy even though the exact solutions are multi-peak and almost singular.
基金the Deanship of Scientific Research at Taibah University on material and moral support in the financing of this research project
文摘This paper is concerned with the harmonic equation(P;) : ?u = 0, u > 0 in B;and ?u/?ν+((n-2)/2)u =((n-2)/2) Ku;on S;where B;is the unit ball in R;, n ≥ 4 with Euclidean metric g;, ?B;= S;is its boundary, K is a function on S;and ε is a small positive parameter. We construct solutions of the subcritical equation(P;) which blow up at one critical point of K. We give also a sufficient condition on the function K to ensure the nonexistence of solutions for(P;) which blow up at one point. Finally, we prove a nonexistence result of single peaked solutions for the supercritical equation(P;).
文摘Specific nonequilibrium states of the quantum harmonic oscillator described by the Lindblad equation have been hereby suggested. This equation makes it possible to determine time-varying effects produced by statistical operator or statistical matrix. Thus, respective representation-varied equilibrium statistical matrixes have been found. Specific mean value equations have been found and their equilibrium solutions have been obtained.
文摘The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose boundaries are defined by a generalized version of the so-called “superformula” introduced by Gielis. A dedicated numerical procedure based on the computer algebra system Mathematica? is developed in order to validate the proposed methodology. In this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained.
文摘This paper is devoted to the study of second-order Duffing equation with singularity at the origin, where? tends to positive infinity as , and the primitive function as . By applying the phase-plane analysis methods and Poincaré-Bohl theorem, we obtain the existence of harmonic solutions of the given equation under a kind of nonresonance condition for the time map.
基金Project supported by the Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant No.2021A1515010328)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B010183001)the National Natural Science Foundation of China(Grant No.12074126)。
文摘Efficient numerical algorithm for stochastic differential equation has been an important object in the research of statistical physics and mathematics for a long time.In this work we study the highly accurate numerical algorithm for the overdamped Langevin equation.In particular,our interest is in the behaviour of the numerical schemes for solving the overdamped Langevin equation in the harmonic system.Based on the large friction limit of the underdamped Langevin dynamic scheme,three algorithms for overdamped Langevin equation are obtained.We derive the explicit expression of the stationary distribution of each algorithm by analysing the discrete time trajectory for both one-dimensional case and multi-dimensional case.The accuracy of the stationary distribution of each algorithm is illustrated by comparing with the exact Boltzmann distribution.Our results demonstrate that the“BAOA-limit”algorithm generates an accurate distribution of the harmonic system in a canonical ensemble,within a stable range of time interval.The other algorithms do not produce the exact distribution of the harmonic system.