期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Posteriori Parameter Choice Strategy for Nonlinear Monotone Operator Equations
1
作者 Hong-qi Yang, Zong-yi HouDepartment of Scientific Computing & Computer Applications, Zhongshan University, Guangzhou 510275,ChinaDepartment of Mathematics, Pudan University, Shanghai 200433, China 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2002年第2期289-294,共6页
In this paper we present an a posteriori parameter choice strategy for nonlinear ill-posed operator equations involving monotone operators. Under certain conditions, this a posteriori parameter choice strategy guarant... In this paper we present an a posteriori parameter choice strategy for nonlinear ill-posed operator equations involving monotone operators. Under certain conditions, this a posteriori parameter choice strategy guarantees the optimal convergence rate O (δ1/2) for Tikhonov-Browder regularization, where δ denotes the noise level of the data perturbation. 展开更多
关键词 Nonlinear operator equation monotone operator convergence rate a posteriori parameter choice
全文增补中
IDENTIFYING AN UNKNOWN SOURCE IN SPACE-FRACTIONAL DIFFUSION EQUATION 被引量:2
2
作者 杨帆 傅初黎 李晓晓 《Acta Mathematica Scientia》 SCIE CSCD 2014年第4期1012-1024,共13页
In this paper, we identify a space-dependent source for a fractional diffusion equation. This problem is ill-posed, i.e., the solution (if it exists) does not depend continuously on the data. The generalized Tikhono... In this paper, we identify a space-dependent source for a fractional diffusion equation. This problem is ill-posed, i.e., the solution (if it exists) does not depend continuously on the data. The generalized Tikhonov regularization method is proposed to solve this problem. An a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained, Numerical examples are presented to illustrate the validity and effectiveness of this method. 展开更多
关键词 spatial-dependent heat source space-fractional diffusion equation generalized Tikhonov regularization a posteriori parameter choice error estimate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部