In this paper we present an a posteriori parameter choice strategy for nonlinear ill-posed operator equations involving monotone operators. Under certain conditions, this a posteriori parameter choice strategy guarant...In this paper we present an a posteriori parameter choice strategy for nonlinear ill-posed operator equations involving monotone operators. Under certain conditions, this a posteriori parameter choice strategy guarantees the optimal convergence rate O (δ1/2) for Tikhonov-Browder regularization, where δ denotes the noise level of the data perturbation.展开更多
In this paper, we identify a space-dependent source for a fractional diffusion equation. This problem is ill-posed, i.e., the solution (if it exists) does not depend continuously on the data. The generalized Tikhono...In this paper, we identify a space-dependent source for a fractional diffusion equation. This problem is ill-posed, i.e., the solution (if it exists) does not depend continuously on the data. The generalized Tikhonov regularization method is proposed to solve this problem. An a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained, Numerical examples are presented to illustrate the validity and effectiveness of this method.展开更多
基金Partially supported by the Young Teachers Foundation of Zhongshan University.
文摘In this paper we present an a posteriori parameter choice strategy for nonlinear ill-posed operator equations involving monotone operators. Under certain conditions, this a posteriori parameter choice strategy guarantees the optimal convergence rate O (δ1/2) for Tikhonov-Browder regularization, where δ denotes the noise level of the data perturbation.
基金supported by the National Natural Science Foundation of China(11171136, 11261032)the Distinguished Young Scholars Fund of Lan Zhou University of Technology (Q201015)the basic scientific research business expenses of Gansu province college
文摘In this paper, we identify a space-dependent source for a fractional diffusion equation. This problem is ill-posed, i.e., the solution (if it exists) does not depend continuously on the data. The generalized Tikhonov regularization method is proposed to solve this problem. An a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained, Numerical examples are presented to illustrate the validity and effectiveness of this method.