Aluminum (AI), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium (Cs), Barium (Ba), Lead (Pb), Bismuth (Bi...Aluminum (AI), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium (Cs), Barium (Ba), Lead (Pb), Bismuth (Bi) and Uranium (U) concentrations were investigated in water samples from fifteen sampling locations in Naviundu river basin, Luano and Ruashi rivers and Luwowoshi spring in Lubumbashi city during February, March and April 2016. Chemical analyses of the samples were carried out using Inductively Coupled Plasma-Mass Spectrometer. Water pH was determined using a pH-meter and mean pH values ranged from 4.2 to 5.8. The highest mean levels of Al (5,961.954 μg·L^-1), Pb (472.287 μg·L^-1), V (21.014 μg·L^-1), Cr (8.185μg·L^-1), U (4.163μg·L^-1) and Bi (0.012 μg·L^-1) were recorded in Chemaf (Chemicals of Africa) hydrometallurgical plant effluent, those of Mn (29,714.593 μg·L^-1), Sr (374.377μg·L^-1), Cd (11.358μg·L^-1) and Cs (0.107μg·L^-1) in Naviundu river at Cimenkat (Katanga's Cement Factory) exit, those of Fe (14,258.9 μg·L^-1) and Ba (307.641μg·L^-1) in Luano river and those of Ag (2.669 μg·L^-1), Mo (0.559 μg·L^-1) and Sn (0.325 μg·L^-1) were respectively noted in Foire channel, Naviundu river under bridge on Kasenga road and Kalulako river. The concentrations of Cd in Naviundu river at Cimenkat exit (11.358 μg·L^-1), Chemaf bydrometallurgical plant effluent (9.697μg·L^-1), Naviundu river under bridge on De Plaines Avenue (6.95 μg·L^-1) and Kalulako river (3.229 μg·L^-1), Pb concentrations in Chemaf hydrometallurgical plant effluent (472.287 μg·L^-1) as well as the AI, Fe and Mn concentrations recorded in most waters in this study exceeded the WHO (World Health Organization) maximum permissible limits for drinking water. The metal contamination of waters of the studied rivers, channel and spring might be partially attributed to natural processes, unplanned urbanization and poor waste management, and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.展开更多
Concentrations of fifteen trace metals including Aluminum (Al), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium...Concentrations of fifteen trace metals including Aluminum (Al), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium (Cs), Barium (Ba), Lead (Pb), Bismuth (Bi) and Uranium (U) were investigated in water samples collected from sixteen sampling locations in the Lubumbashi river basin and five locations in Kafubu, Kimilolo and Kinkalabwamba rivers during February, March and April 2016. Chemical analyses of the samples were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Water pH was determined using a pH-meter and pH values ranged from 4.2 to 7.8. The highest mean trace metal levels of water were 5,515.816 )μg·L^-1, 166.925μg·L^-1, 3.898μg·L^-1 and 1.879μg·L^-1 for Al, Ba, Cr and U, respectively in Kashobwe river, 2,419.522 μg·L^-1 and 17.994 μg·L^-1 for Fe and Cd, respectively in Kafubu river at its confluence with Lubumbashi rivers, 1,408.136μg·L^-1 for Mn in Kafubu river 1.36 kilometer downward its confluence with Naviundu river, 222.406 μg·L^-1 and 0.092 μg·L^-1 for Sr and Cs, respectively in Kamalondo river 60 meters from the GCM-Lubumbashi (General of Quarries and Mines-Lubumbashi) smelter, 140.294μg·L^-1, 12.063 μg·L^-1 and 0.008μg·L^-1 for Pb, V and Bi, respectively in Munua river, 3.544 μg·L^-1 for Ag in Kabulameshi river, 1.49 μg·L^-1 for Mo in Kafubu river and 0.081μg·L^-1 for Sn in Tshondo river. The mean concentrations of Al, Cd, Fe, Mn and Pb in water of many rivers and the channel exceeded the maximum admissible limits of the WHO (World Health Organization), USEPA (United States Environmental Protection Agency) and EU (European Union) drinking-water standards. Trace metal contamination of water of the studied rivers, channel and springs might be partially attributed to natural processes, unplanned urbanization, poor waste management and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.展开更多
济南泉域是市区泉水的汇流及蓄水范围,在其北部城区中心地带出露趵突泉、黑虎泉、五龙潭和珍珠泉四大泉群。为更好地保护和利用济南泉域内岩溶地下水,文章对济南泉域的边界条件、岩溶主径流通道、地下水循环特征及水质变化几个敏感问...济南泉域是市区泉水的汇流及蓄水范围,在其北部城区中心地带出露趵突泉、黑虎泉、五龙潭和珍珠泉四大泉群。为更好地保护和利用济南泉域内岩溶地下水,文章对济南泉域的边界条件、岩溶主径流通道、地下水循环特征及水质变化几个敏感问题进行探讨。利用泉群流量相关分析、流场特征分析、回灌补源分析及自备井调查等手段,重新界定了济南泉域的东边界,将其北部透水段向东扩展至原边界以东约4 km。通过对钻孔岩溶分层统计及缓冲区分析,在山前地带沿党家庄-十六里河-千佛山断裂泉城公园方向地下埋深100-150 m 发现一条补给四大泉群的岩溶地下水集中径流带。研究发现,五龙潭和珍珠泉以深循环为主,补给主要来自岩溶地下水,而趵突泉和黑虎泉同时受深循环和浅循环影响较大,趵突泉主要补给来自西部和南部岩溶地下水和地表水,除此以外黑虎泉在东南方向上还有一定量的岩溶地下水补给。目前岩溶水水质变差,南部岩溶裸露区,尤其水库河道周边地带,生态环境亟待治理。展开更多
文摘Aluminum (AI), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium (Cs), Barium (Ba), Lead (Pb), Bismuth (Bi) and Uranium (U) concentrations were investigated in water samples from fifteen sampling locations in Naviundu river basin, Luano and Ruashi rivers and Luwowoshi spring in Lubumbashi city during February, March and April 2016. Chemical analyses of the samples were carried out using Inductively Coupled Plasma-Mass Spectrometer. Water pH was determined using a pH-meter and mean pH values ranged from 4.2 to 5.8. The highest mean levels of Al (5,961.954 μg·L^-1), Pb (472.287 μg·L^-1), V (21.014 μg·L^-1), Cr (8.185μg·L^-1), U (4.163μg·L^-1) and Bi (0.012 μg·L^-1) were recorded in Chemaf (Chemicals of Africa) hydrometallurgical plant effluent, those of Mn (29,714.593 μg·L^-1), Sr (374.377μg·L^-1), Cd (11.358μg·L^-1) and Cs (0.107μg·L^-1) in Naviundu river at Cimenkat (Katanga's Cement Factory) exit, those of Fe (14,258.9 μg·L^-1) and Ba (307.641μg·L^-1) in Luano river and those of Ag (2.669 μg·L^-1), Mo (0.559 μg·L^-1) and Sn (0.325 μg·L^-1) were respectively noted in Foire channel, Naviundu river under bridge on Kasenga road and Kalulako river. The concentrations of Cd in Naviundu river at Cimenkat exit (11.358 μg·L^-1), Chemaf bydrometallurgical plant effluent (9.697μg·L^-1), Naviundu river under bridge on De Plaines Avenue (6.95 μg·L^-1) and Kalulako river (3.229 μg·L^-1), Pb concentrations in Chemaf hydrometallurgical plant effluent (472.287 μg·L^-1) as well as the AI, Fe and Mn concentrations recorded in most waters in this study exceeded the WHO (World Health Organization) maximum permissible limits for drinking water. The metal contamination of waters of the studied rivers, channel and spring might be partially attributed to natural processes, unplanned urbanization and poor waste management, and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.
文摘Concentrations of fifteen trace metals including Aluminum (Al), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Strontium (Sr), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Caesium (Cs), Barium (Ba), Lead (Pb), Bismuth (Bi) and Uranium (U) were investigated in water samples collected from sixteen sampling locations in the Lubumbashi river basin and five locations in Kafubu, Kimilolo and Kinkalabwamba rivers during February, March and April 2016. Chemical analyses of the samples were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Water pH was determined using a pH-meter and pH values ranged from 4.2 to 7.8. The highest mean trace metal levels of water were 5,515.816 )μg·L^-1, 166.925μg·L^-1, 3.898μg·L^-1 and 1.879μg·L^-1 for Al, Ba, Cr and U, respectively in Kashobwe river, 2,419.522 μg·L^-1 and 17.994 μg·L^-1 for Fe and Cd, respectively in Kafubu river at its confluence with Lubumbashi rivers, 1,408.136μg·L^-1 for Mn in Kafubu river 1.36 kilometer downward its confluence with Naviundu river, 222.406 μg·L^-1 and 0.092 μg·L^-1 for Sr and Cs, respectively in Kamalondo river 60 meters from the GCM-Lubumbashi (General of Quarries and Mines-Lubumbashi) smelter, 140.294μg·L^-1, 12.063 μg·L^-1 and 0.008μg·L^-1 for Pb, V and Bi, respectively in Munua river, 3.544 μg·L^-1 for Ag in Kabulameshi river, 1.49 μg·L^-1 for Mo in Kafubu river and 0.081μg·L^-1 for Sn in Tshondo river. The mean concentrations of Al, Cd, Fe, Mn and Pb in water of many rivers and the channel exceeded the maximum admissible limits of the WHO (World Health Organization), USEPA (United States Environmental Protection Agency) and EU (European Union) drinking-water standards. Trace metal contamination of water of the studied rivers, channel and springs might be partially attributed to natural processes, unplanned urbanization, poor waste management and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.
文摘济南泉域是市区泉水的汇流及蓄水范围,在其北部城区中心地带出露趵突泉、黑虎泉、五龙潭和珍珠泉四大泉群。为更好地保护和利用济南泉域内岩溶地下水,文章对济南泉域的边界条件、岩溶主径流通道、地下水循环特征及水质变化几个敏感问题进行探讨。利用泉群流量相关分析、流场特征分析、回灌补源分析及自备井调查等手段,重新界定了济南泉域的东边界,将其北部透水段向东扩展至原边界以东约4 km。通过对钻孔岩溶分层统计及缓冲区分析,在山前地带沿党家庄-十六里河-千佛山断裂泉城公园方向地下埋深100-150 m 发现一条补给四大泉群的岩溶地下水集中径流带。研究发现,五龙潭和珍珠泉以深循环为主,补给主要来自岩溶地下水,而趵突泉和黑虎泉同时受深循环和浅循环影响较大,趵突泉主要补给来自西部和南部岩溶地下水和地表水,除此以外黑虎泉在东南方向上还有一定量的岩溶地下水补给。目前岩溶水水质变差,南部岩溶裸露区,尤其水库河道周边地带,生态环境亟待治理。