Lead is a ubiquitous pollutant and Pb pollution is a global public health problem.Lead has been reported to induce multiple adverse effects,including reproductive toxicity,neurotoxicity,carcinogenicity,nephrotoxicity,...Lead is a ubiquitous pollutant and Pb pollution is a global public health problem.Lead has been reported to induce multiple adverse effects,including reproductive toxicity,neurotoxicity,carcinogenicity,nephrotoxicity,immunotoxicity,and hypertension[1].The traditional medical treatment available for Pb poisoning is chelation,which can save lives in individuals with very high blood Pb levels.The commonly used chelating agents include CaNa2EDTA and meso-2,3-dimercaptosuccinic acid.However,chelation therapy has strong short-term effects on the overall long-term management of Pb exposure.展开更多
Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the...Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.展开更多
High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the per...High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.展开更多
The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed ov...The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed over a certain range of 2 km,involving over a hundred devices.The white rabbit,a technology-enhancing Gigabit Ethernet,has shown the capability of scheduling distributed timing devices but still faces the challenge of obtaining real-time synchronization calibration param-eters with high precision.This study presents a calibration system based on a time-to-digital converter implemented on an ARM-based System-on-Chip(SoC).The system consists of four multi-sample delay lines,a bubble-proof encoder,an edge controller for managing data from different channels,and a highly effective calibration module that benefits from the SoC architecture.The performance was evaluated with an average RMS precision of 5.51 ps by measuring the time intervals from 0 to 24,000 ps with 120,000 data for every test.The design presented in this study refines the calibration precision of the HIAF timing system.This eliminates the errors caused by manual calibration without efficiency loss and provides data support for fault diagnosis.It can also be easily tailored or ported to other devices for specific applications and provides more space for developing timing systems for particle accelerators,such as white rabbits on HIAF.展开更多
This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind di...This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results.展开更多
Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challeng...Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.展开更多
Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique wa...Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.展开更多
A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems....A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems.The system consists of a Buck/Boost+CLLLC cascaded converter as a submodule,which is combined in series and parallel on the input and output sides to achieve direct-current(DC)voltage transformation,bidirectional energy flow,and electrical isolation.The CLLLC converter operates in DC transformer mode in the submodule,while the Buck/Boost converter participates in voltage regulation.This article establishes a suitable mathematical model for the proposed system topology,and uses MPC to control the system based on this mathematical model.Module parameters are designed and calculated,and simulation is built in MATLAB/Simulink to complete the simulation comparison experiment between MPC and traditional proportional integral(PI)control.Finally,a physical experimental platform is built to complete the physical comparison experiment.The simulation and physical experimental results prove that the control accuracy and response speed ofMPC are better than traditional PI control strategy.展开更多
A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the line...A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.展开更多
Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentia...Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.展开更多
To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedanc...To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.展开更多
Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve a...Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve as mediators of intercellular communication between donor and recipient cells or microorganism-infected and noninfected cells.Coronavirus disease 2019(COVID-19)disease is caused by infection of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)of host cells in the respiratory system and various extra-pulmonary tissue/organs,resulting in complications of multiple organ systems.As the cell surface receptor,angiotensin-converting enzyme 2(ACE2)mediates cellular entry of SARS-CoV-2 into the host cells in patients with COVID-19.Recent studies have found that ACE2 can be released with EVs,which have been shown to interfere with the entry of the virus into host cells and thus may be involved in COVID-19 pathophysiology.In addition,ACE2,neprilysin(NEP),and thimet oligopeptidase(TOP)are the key enzymes that regulate angiotensin metabolism by converting angiotensin II or angiotensin I to angiotensin 1-7,the latter of which has protective effects in counterbalancing the harmful effects of angiotensin II in COVID-19 disease.This review summarizes the recent research progress regarding EV-associated ACE2,NEP,and TOP and the perspectives of their potential involvement in the pathophysiology of COVID-19 disease.展开更多
Studies of converted S-wave data recorded on the ocean bottom seismometer(OBS)allow for the estimation of crustal S-wave velocity,from which is further derived the Vp/Vs ratio to constrain the crustal lithology and ge...Studies of converted S-wave data recorded on the ocean bottom seismometer(OBS)allow for the estimation of crustal S-wave velocity,from which is further derived the Vp/Vs ratio to constrain the crustal lithology and geophysical properties.Constructing a precise S-wave velocity model is important for deep structural research,and inversion of converted S-waves provides a potential solution.However,the inversion of the converted S-wave remains a weakness because of the complexity of the seismic ray path and the inconsistent conversion interface.In this study,we introduced two travel time correction methods for the S-wave velocity inversion and imaged different S-wave velocity structures in accordance with the corresponding corrected S-wave phases using seismic data of profile EW6 in the northeastern South China Sea(SCS).The two inversion models show a similar trend in velocities,and the velocity difference is<0.15 km/s(mostly in the range of 0–0.1 km/s),indicating the accuracy of the two travel time correction methods and the reliability of the inversion results.According to simulations of seismic ray tracing based on different models,the velocity of sediments is the primary influencing factor in ray tracing for S-wave phases.If the sedimentary layer has high velocities,the near offset crustal S-wave refractions cannot be traced.In contrast,the ray tracing of Moho S-wave reflections was not significantly impacted by the velocity of the sediments.The two travel time correction methods have their own advantages,and the application of different approaches is based on additional requirements.These works provide an important reference for future improvements in converted S-wave research.展开更多
Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to util...Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.展开更多
Objective:The aim of this study was to examine angiotensin converting enzyme(ACE)insertion/deletion,alpha adducin,and interleukin-10(IL-10)gene polymorphisms(GPs)in terms of both idiopathic sudden sensorineural hearin...Objective:The aim of this study was to examine angiotensin converting enzyme(ACE)insertion/deletion,alpha adducin,and interleukin-10(IL-10)gene polymorphisms(GPs)in terms of both idiopathic sudden sensorineural hearing loss(ISSNHL)risk and their potential prognostic effects.Methods:The study group consisted of 70 patients and the control group consisted of 50 patients.Venous blood samples were analyzed for relevant GPs via kompetitive allele-specific polymerase chain reaction.Age,sex,affected side,tinnitus,and vertiginous symptom status,number of days between symptom onset and hospital admission,pure tone audiometry results at admission and after treatment were included in the study.Data were compared statistically.Results:The D allele of ACE insertion/deletion GP was significantly more frequent in patients with ISSNHL than in the control group(p=0.032).II genotype was associated with a reduced risk of ISSNHL(p=0.036).The amount of hearing loss was significantly higher in patients with the TT genotype(p=0.027)and T allele of the IL-10 GP(p=0.035)than in the patients without this allele.Severe hearing loss was a poor prognostic factor(p=0.008).Conclusions:The D allele of ACE insertion/deletion GP may be involved in the ISSNHL etiology.Due to the association of this allele with occlusive vascular pathologies,ischemia is believed to be a common pathway in the etiopathogenesis of ISSNHL.展开更多
基金sponsored by the Central Government Guides Local Scientific and Technological Development Fund Project(YDZX 20201400001443)Shanxi International Science and Technology Cooperation Project(201803D421065)+2 种基金National Natural Science Foundation of China(Grant No.30672621 and 81173473)Taiyuan City Science and Technology Project Special Talents Star Project(120247-08)Basic Research Project of Shanxi Province(202103021223241).
文摘Lead is a ubiquitous pollutant and Pb pollution is a global public health problem.Lead has been reported to induce multiple adverse effects,including reproductive toxicity,neurotoxicity,carcinogenicity,nephrotoxicity,immunotoxicity,and hypertension[1].The traditional medical treatment available for Pb poisoning is chelation,which can save lives in individuals with very high blood Pb levels.The commonly used chelating agents include CaNa2EDTA and meso-2,3-dimercaptosuccinic acid.However,chelation therapy has strong short-term effects on the overall long-term management of Pb exposure.
基金This work is supported by the Macao Science and Technology Development Fund(FDCT)under Grant 0041/2022/A1by the Research Committee of University of Macao under Grant MYRG2022-00004-IME.
文摘Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.
文摘High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.
基金supported by high-intensity heavy-ion accelerator facility(HIAF)approved by the National Development and Reform Commission of China(2017-000052-73-01-002107)。
文摘The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed over a certain range of 2 km,involving over a hundred devices.The white rabbit,a technology-enhancing Gigabit Ethernet,has shown the capability of scheduling distributed timing devices but still faces the challenge of obtaining real-time synchronization calibration param-eters with high precision.This study presents a calibration system based on a time-to-digital converter implemented on an ARM-based System-on-Chip(SoC).The system consists of four multi-sample delay lines,a bubble-proof encoder,an edge controller for managing data from different channels,and a highly effective calibration module that benefits from the SoC architecture.The performance was evaluated with an average RMS precision of 5.51 ps by measuring the time intervals from 0 to 24,000 ps with 120,000 data for every test.The design presented in this study refines the calibration precision of the HIAF timing system.This eliminates the errors caused by manual calibration without efficiency loss and provides data support for fault diagnosis.It can also be easily tailored or ported to other devices for specific applications and provides more space for developing timing systems for particle accelerators,such as white rabbits on HIAF.
基金supported by National Natural Science Foundation of China (Grant Nos.52072309 and 62303379)Beijing Institute of Spacecraft System Engineering Research Project (Grant NO.JSZL2020203B004)+1 种基金Natural Science Foundation of Shaanxi Province,Chinese (Grant NOs.2023-JC-QN-0003 and 2023-JC-QN-0665)Industry-University-Research Innovation Fund of Ministry of Education for Chinese Universities (Grant NO.2022IT189)。
文摘This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results.
基金Project supported by the National Undergraduate Training Projects for Innovation and Entrepreneurship (Grant No. 5003182007)the National Natural Science Foundation of China (Grant No. 12074137)+1 种基金the National Key Research and Development Project of China (Grant No. 2021YFB2801903)the Natural Science Foundation from the Science,Technology,and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20220530161010023)。
文摘Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.
文摘Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.
基金supported by the National Key Research and Development Plan,Grant/Award Number:2018YFB1503005.
文摘A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems.The system consists of a Buck/Boost+CLLLC cascaded converter as a submodule,which is combined in series and parallel on the input and output sides to achieve direct-current(DC)voltage transformation,bidirectional energy flow,and electrical isolation.The CLLLC converter operates in DC transformer mode in the submodule,while the Buck/Boost converter participates in voltage regulation.This article establishes a suitable mathematical model for the proposed system topology,and uses MPC to control the system based on this mathematical model.Module parameters are designed and calculated,and simulation is built in MATLAB/Simulink to complete the simulation comparison experiment between MPC and traditional proportional integral(PI)control.Finally,a physical experimental platform is built to complete the physical comparison experiment.The simulation and physical experimental results prove that the control accuracy and response speed ofMPC are better than traditional PI control strategy.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20242,52271260,52001054)Natural Science Foundation of Liaoning Province(Grant No.2021-BS-060)Fundamental Research Funds for the Central Universities(Grant No.DUT23RC(3)017)。
文摘A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.
基金financially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2022R1I1A1A01069442)the 2024 Hongik University Research Fund。
文摘Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.
基金National Natural Science Foundation of China(52307127)State Key Laboratory of Power System Operation and Control(SKLD23KZ07)。
文摘To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.
文摘Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve as mediators of intercellular communication between donor and recipient cells or microorganism-infected and noninfected cells.Coronavirus disease 2019(COVID-19)disease is caused by infection of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)of host cells in the respiratory system and various extra-pulmonary tissue/organs,resulting in complications of multiple organ systems.As the cell surface receptor,angiotensin-converting enzyme 2(ACE2)mediates cellular entry of SARS-CoV-2 into the host cells in patients with COVID-19.Recent studies have found that ACE2 can be released with EVs,which have been shown to interfere with the entry of the virus into host cells and thus may be involved in COVID-19 pathophysiology.In addition,ACE2,neprilysin(NEP),and thimet oligopeptidase(TOP)are the key enzymes that regulate angiotensin metabolism by converting angiotensin II or angiotensin I to angiotensin 1-7,the latter of which has protective effects in counterbalancing the harmful effects of angiotensin II in COVID-19 disease.This review summarizes the recent research progress regarding EV-associated ACE2,NEP,and TOP and the perspectives of their potential involvement in the pathophysiology of COVID-19 disease.
基金The National Natural Science Foundation of China under contract Nos 42276062 and 42006071the Seismological Research Foundation for Youths of Guangdong Earthquake Agency under contract No.GDDZY202307+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences under contract No.XDA22020303the Science and Technology Planning Project of Guangdong Province-Guangdong Collaborative Innovation Center for Earthquake Prevention and Disaster Mitigation Technology under contract No.2018B020207011.
文摘Studies of converted S-wave data recorded on the ocean bottom seismometer(OBS)allow for the estimation of crustal S-wave velocity,from which is further derived the Vp/Vs ratio to constrain the crustal lithology and geophysical properties.Constructing a precise S-wave velocity model is important for deep structural research,and inversion of converted S-waves provides a potential solution.However,the inversion of the converted S-wave remains a weakness because of the complexity of the seismic ray path and the inconsistent conversion interface.In this study,we introduced two travel time correction methods for the S-wave velocity inversion and imaged different S-wave velocity structures in accordance with the corresponding corrected S-wave phases using seismic data of profile EW6 in the northeastern South China Sea(SCS).The two inversion models show a similar trend in velocities,and the velocity difference is<0.15 km/s(mostly in the range of 0–0.1 km/s),indicating the accuracy of the two travel time correction methods and the reliability of the inversion results.According to simulations of seismic ray tracing based on different models,the velocity of sediments is the primary influencing factor in ray tracing for S-wave phases.If the sedimentary layer has high velocities,the near offset crustal S-wave refractions cannot be traced.In contrast,the ray tracing of Moho S-wave reflections was not significantly impacted by the velocity of the sediments.The two travel time correction methods have their own advantages,and the application of different approaches is based on additional requirements.These works provide an important reference for future improvements in converted S-wave research.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171289,42176210,and 52201330)the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2022B1515250005)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311023014).
文摘Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.
基金supported by The Coordinatorship of Scientific Research Projects Department,Süleyman Demirel University(Grant Number:TTU-2021-8402).
文摘Objective:The aim of this study was to examine angiotensin converting enzyme(ACE)insertion/deletion,alpha adducin,and interleukin-10(IL-10)gene polymorphisms(GPs)in terms of both idiopathic sudden sensorineural hearing loss(ISSNHL)risk and their potential prognostic effects.Methods:The study group consisted of 70 patients and the control group consisted of 50 patients.Venous blood samples were analyzed for relevant GPs via kompetitive allele-specific polymerase chain reaction.Age,sex,affected side,tinnitus,and vertiginous symptom status,number of days between symptom onset and hospital admission,pure tone audiometry results at admission and after treatment were included in the study.Data were compared statistically.Results:The D allele of ACE insertion/deletion GP was significantly more frequent in patients with ISSNHL than in the control group(p=0.032).II genotype was associated with a reduced risk of ISSNHL(p=0.036).The amount of hearing loss was significantly higher in patients with the TT genotype(p=0.027)and T allele of the IL-10 GP(p=0.035)than in the patients without this allele.Severe hearing loss was a poor prognostic factor(p=0.008).Conclusions:The D allele of ACE insertion/deletion GP may be involved in the ISSNHL etiology.Due to the association of this allele with occlusive vascular pathologies,ischemia is believed to be a common pathway in the etiopathogenesis of ISSNHL.