This study explores the influence of infill patterns on machine acceleration prediction in the realm of three-dimensional(3D)printing,particularly focusing on extrusion technology.Our primary objective was to develop ...This study explores the influence of infill patterns on machine acceleration prediction in the realm of three-dimensional(3D)printing,particularly focusing on extrusion technology.Our primary objective was to develop a long short-term memory(LSTM)network capable of assessing this impact.We conducted an extensive analysis involving 12 distinct infill patterns,collecting time-series data to examine their effects on the acceleration of the printer’s bed.The LSTM network was trained using acceleration data from the adaptive cubic infill pattern,while the Archimedean chords infill pattern provided data for evaluating the network’s prediction accuracy.This involved utilizing offline time-series acceleration data as the training and testing datasets for the LSTM model.Specifically,the LSTM model was devised to predict the acceleration of a fused deposition modeling(FDM)printer using data from the adaptive cubic infill pattern.Rigorous testing yielded a root mean square error(RMSE)of 0.007144,reflecting the model’s precision.Further refinement and testing of the LSTM model were conducted using acceleration data from the Archimedean chords infill pattern,resulting in an RMSE of 0.007328.Notably,the developed LSTM model demonstrated superior performance compared to an optimized recurrent neural network(RNN)in predicting machine acceleration data.The empirical findings highlight that the adaptive cubic infill pattern considerably influences the dimensional accuracy of parts printed using FDM technology.展开更多
A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx...A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx 4).展开更多
临床医生可通过观察眼底视网膜血管及其分支对人体是否患有疾病进行早期诊断,但由于视网膜中的血管错综复杂,模型在分割时会出现对微细血管分割精确度不足的问题。为此,提出一种结合残差模块Res2-net以及高效通道注意力机制(efficient c...临床医生可通过观察眼底视网膜血管及其分支对人体是否患有疾病进行早期诊断,但由于视网膜中的血管错综复杂,模型在分割时会出现对微细血管分割精确度不足的问题。为此,提出一种结合残差模块Res2-net以及高效通道注意力机制(efficient channel attention,ECA)的D-Linknet模型。首先,利用Res2-net代替基础模型中的残差模块Res-net以提升每个网络层的感受野;其次,在Res2-net中添加一种结合压缩激励(squeeze and excitation,SE)和门通道(gated channel transformation,GCT)的注意力机制模块,改善处于复杂背景下的血管分割效果和效率;在网络的解码层加入ECA确保模型计算的性能,避免因降维导致的精度下降;最后,融合改进的模型输出图与掩膜图细化分割结果。在公开数据集DRIVE、STARE上进行分割实验,模型准确度(accuracy,AC)分别为97.11%、96.32%,灵敏度(sensitivity,SE)为84.55%、83.92%,曲线下方范围的面积(area under curve,AUC)为0.9873和0.9766,分割效果优于其他模型。实验证明了算法的可行性,为后续研究提供科学依据。展开更多
Acoustic holograms can recover wavefront stored acoustic field information and produce high-fidelity complex acoustic fields. Benefiting from the huge spatial information that traditional acoustic elements cannot matc...Acoustic holograms can recover wavefront stored acoustic field information and produce high-fidelity complex acoustic fields. Benefiting from the huge spatial information that traditional acoustic elements cannot match, acoustic holograms pursue the realization of high-resolution complex acoustic fields and gradually tend to high-frequency ultrasound applications. However, conventional continuous phase holograms are limited by three-dimensional(3D) printing size, and the presence of unavoidable small printing errors makes it difficult to achieve acoustic field reconstruction at high frequency accuracy. Here, we present an optimized discrete multi-step phase hologram. It can ensure the reconstruction quality of image with high robustness, and properly lower the requirement for the 3D printing accuracy. Meanwhile, the concept of reconstruction similarity is proposed to refine a measure of acoustic field quality. In addition, the realized complex acoustic field at 20 MHz promotes the application of acoustic holograms at high frequencies and provides a new way to generate high-fidelity acoustic fields.展开更多
A novel hybrid type photosensitive resin for stereolithography in 3D printing was prepared with bisphenol A type epoxy diacrylate (EA-612), tripropylene glycol diacrylate (TPGDA),ethoxylated trimethyolpropane tria...A novel hybrid type photosensitive resin for stereolithography in 3D printing was prepared with bisphenol A type epoxy diacrylate (EA-612), tripropylene glycol diacrylate (TPGDA),ethoxylated trimethyolpropane triacrylate(EO3TMPTA), cycloaliphatic diepoxide(ERL-4221),polycaprolactonepolyol(Polyol-0301),1-hydroxy-cyclohphenyl ketone(Irgacure184), and a mixture of triarylsulfonium hexafluoroantimonate salts (Ar3SSbF6). The novel hybrid type photosensitive resin was the photosensitive resin of an epoxy-acrylate hybrid system, which proceeded free radical polymerization and cationic polymerization in ultraviolet (UV) laser. Cuboid parts and double-cantilever parts were fabricated by using a stereolithography apparatus with the novel hybrid type photosensitive resin as the processing material,and the dimension shrinkage factor and the curl factor were tested. The shrinkage factor was less than 2.00%,and the curl factor was less than 8.00%, which showed that the accuracy of the fabricated parts was high with the photosensitive resin for stereolithography in 3D printing.展开更多
Digital Elevation Models (DEMs) depict the configuration of the earth surface and are being applied in many areas in earth and environmental sciences. In this study, the accuracy of the Advanced Land Observing Satelli...Digital Elevation Models (DEMs) depict the configuration of the earth surface and are being applied in many areas in earth and environmental sciences. In this study, the accuracy of the Advanced Land Observing Satellite World 3D Digital Surface Model version 2.1 (ALOS W3D30), the Shuttle Radar Topography Mission Digital Elevation Model version 3.0 (SRTM30) and the Advanced Space borne Thermal Emission and Reflection Radiometer Global DEM version 2.0 (ASTER GDEM2) was statistically assessed using high accuracy GPS survey data. Root-Mean-Square errors of ~5.40 m, ~7.47 m and ~20.03 m were obtained for ALOS W3D30, SRTM30 and ASTER GDEM2 respectively. In further analyses, we discovered that ALOS W3D30 and SRTM30 were much more accurate in regions where the height intervals were within 201 m - 400 m and >801 m. ALOS W3D30 proved to be the most accurate DEM that best represents the topography of the earth’s surface and could be used for some earth and environmental applications in Nigeria. We recommend that this study should serve as a guide in the use of any of these DEMs for earth and environmental applications in Nigeria.展开更多
The time-domain calibration coefficient of a D-Dot sensor should be identical across various transverse electromagnetic (TEM) cells to comply with the IEEE Std 1309. However, in our previous calibration experiments, p...The time-domain calibration coefficient of a D-Dot sensor should be identical across various transverse electromagnetic (TEM) cells to comply with the IEEE Std 1309. However, in our previous calibration experiments, poor consistency was observed. The size of D-Dot sensors relative to TEM cells is considered the main reason for this poor consistency. Therefore, this study aims at determining the calibration coefficient of a D-Dot sensor. We calculate the theoretical coefficient as a reference. Practical calibration experiments involve the processing of TEM cells with three different sizes. To observe the response more clearly, corresponding models are constructed and numerical simulations are performed. The numerical simulations and experimental calibration are in good agreement. To determine the calibration accuracy, we quantify the accuracy using the relative error of the calibration coefficient. By comparing the coefficients obtained, it can be concluded that the perturbation error is about 15% when the relative size is over 1/3. Further, the relative size should be less than 1/5 to obtain a relative error below 10%.展开更多
The objective of the work is to determine the influence of the PLA melting temperature during 3D printing on the dimensional accuracy of the model parts. Two modular drilling devices were also made using PLA model par...The objective of the work is to determine the influence of the PLA melting temperature during 3D printing on the dimensional accuracy of the model parts. Two modular drilling devices were also made using PLA model parts. The model parts were 3D printed using FDM technology and the ZMorph 2.0 hybrid 3D printer. The accuracy of 3D printing of the model part influences the realization of modular devices. In recent years, technology has evolved a lot, and the need to have the most efficient manufacturing equipment has increased. This is the reason for the development of 3D printers using FDM technology for plastic parts. The software used by these 3D printers used in FDM technology is very sophisticated, as they allow the manufacture of very precise 3D prototypes, identical to the designed 3D model, through modern additive manufacturing techniques. The quality and mechanical strength of the prototypes obtained using 3D printers is very good. The materials used by the 3D printers manufactured by FDM are cheap and accessible. These 3D printers are used to make three-dimensional objects (gears, flanges, bearings, covers, casings, mechanisms, figurines, interior and exterior design elements, architectural models, medical models).展开更多
We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates, For anisotropic cases, the bending process of vortices is described ...We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates, For anisotropic cases, the bending process of vortices is described in detail by the decrease of Gross-Pitaevskii energy. A completely straight vortex and the steady and symmetrical multiple-vortex configurations are obtained. We analyse the effect of initial conditions and angular velocity on the number and shape of vortices.展开更多
In this study, we compared the motion accuracy of six degrees of freedom (6D) couch for precision radiotherapy with or without weights attached to the couch. Two digital cameras were focused on the iso-center of a lin...In this study, we compared the motion accuracy of six degrees of freedom (6D) couch for precision radiotherapy with or without weights attached to the couch. Two digital cameras were focused on the iso-center of a linear accelerator. Images of a needle which had been fixed to the 6D couch were obtained using the cameras when the couch moved in translation and rotation around each axis. The three-dimensional (3D) coordinates of the needle were calculated from coordinate values in the images. A coordinate error of the needle position relative to the theoretical position was calculated. The errors were obtained with or without a 60 kg weight attached to the 6D couch, and these errors were compared with each other. The mean distance of the 3D error vectors for the weighted test was 0.21 ± 0.11 mm, and >0.16 ± 0.09 mm for the non-weighted test (p展开更多
A high-speed and high-resolution optical A/D quantizer is proposed.Its architecture is discussed.Bit circuits are built by using the phase modulators in parallel.Based on the different character of the half-wave volta...A high-speed and high-resolution optical A/D quantizer is proposed.Its architecture is discussed.Bit circuits are built by using the phase modulators in parallel.Based on the different character of the half-wave voltage for every phase modulator and the polarized bias design of incident light,the RF input signal is coled and transmitted in the form of optical digital signal.According to the principle of the architecture,the high-resolution quantizers with 8-bit and 12-bit,et al.are built,which operate at 100 GS/s.Their quantization noise is invariable almost with bit circuits increasing.The simulation result of 4-bit A/D quantizer is also given.展开更多
By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir b...By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir be easily described in detail. The 3D visualization and 3D interactive editing of geological structure model are the key for modeling procedure. And a high accuracy and resolution geological model has been well applied in optimizing the production scheme.展开更多
This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors ...This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors which exist in our smartphones such as accelerometer, gyroscope, magnetometer etc. to track the position for painting in virtual reality, like Google Tilt Brush, but cost effectively. Research studies till date on estimating position and localization and tracking have been thoroughly reviewed to find the appropriate algorithm which will provide accurate result with minimum drift error. Sensor fusion, Inertial Measurement Unit (IMU), MEMS inertial sensor, Kalman filter based global translational localization systems are studied. It is observed, prevailing approaches consist issues such as stability, random bias drift, noisy acceleration output, position estimation error, robustness or accuracy, cost effectiveness etc. Moreover, issues with motions that do not follow laws of physics, bandwidth, restrictive nature of assumptions, scale optimization for large space are noticed as well. Advantages of such smartphone sensor based position estimation approaches include, less memory demand, very fast operation, making them well suited for real time problems and embedded systems. Being independent of the size of the system, they can work effectively for high dimensional systems as well. Through study of these approaches it is observed, extended Kalman filter gives the highest accuracy with reduced requirement of excess hardware during tracking. It renders better and faster result when used in accelerometer sensor. With the aid of various software, error accuracy can be increased further as well.展开更多
A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and t...A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)).展开更多
文摘This study explores the influence of infill patterns on machine acceleration prediction in the realm of three-dimensional(3D)printing,particularly focusing on extrusion technology.Our primary objective was to develop a long short-term memory(LSTM)network capable of assessing this impact.We conducted an extensive analysis involving 12 distinct infill patterns,collecting time-series data to examine their effects on the acceleration of the printer’s bed.The LSTM network was trained using acceleration data from the adaptive cubic infill pattern,while the Archimedean chords infill pattern provided data for evaluating the network’s prediction accuracy.This involved utilizing offline time-series acceleration data as the training and testing datasets for the LSTM model.Specifically,the LSTM model was devised to predict the acceleration of a fused deposition modeling(FDM)printer using data from the adaptive cubic infill pattern.Rigorous testing yielded a root mean square error(RMSE)of 0.007144,reflecting the model’s precision.Further refinement and testing of the LSTM model were conducted using acceleration data from the Archimedean chords infill pattern,resulting in an RMSE of 0.007328.Notably,the developed LSTM model demonstrated superior performance compared to an optimized recurrent neural network(RNN)in predicting machine acceleration data.The empirical findings highlight that the adaptive cubic infill pattern considerably influences the dimensional accuracy of parts printed using FDM technology.
文摘A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx 4).
文摘临床医生可通过观察眼底视网膜血管及其分支对人体是否患有疾病进行早期诊断,但由于视网膜中的血管错综复杂,模型在分割时会出现对微细血管分割精确度不足的问题。为此,提出一种结合残差模块Res2-net以及高效通道注意力机制(efficient channel attention,ECA)的D-Linknet模型。首先,利用Res2-net代替基础模型中的残差模块Res-net以提升每个网络层的感受野;其次,在Res2-net中添加一种结合压缩激励(squeeze and excitation,SE)和门通道(gated channel transformation,GCT)的注意力机制模块,改善处于复杂背景下的血管分割效果和效率;在网络的解码层加入ECA确保模型计算的性能,避免因降维导致的精度下降;最后,融合改进的模型输出图与掩膜图细化分割结果。在公开数据集DRIVE、STARE上进行分割实验,模型准确度(accuracy,AC)分别为97.11%、96.32%,灵敏度(sensitivity,SE)为84.55%、83.92%,曲线下方范围的面积(area under curve,AUC)为0.9873和0.9766,分割效果优于其他模型。实验证明了算法的可行性,为后续研究提供科学依据。
基金Project supported by the China Postdoctoral Science Foundation (Grant No.2023M732745)the National Natural Science Foundations of China (Grant Nos.61974110 and 62104177)+1 种基金the Fundamental Research Funds for the Central Universities,China (Grant Nos.QTZX23022 and JBF211103)the Cooperation Program of XDU– Chongqing IC Innovation Research Institute (Grant No.CQ IRI-2022CXY-Z07)。
文摘Acoustic holograms can recover wavefront stored acoustic field information and produce high-fidelity complex acoustic fields. Benefiting from the huge spatial information that traditional acoustic elements cannot match, acoustic holograms pursue the realization of high-resolution complex acoustic fields and gradually tend to high-frequency ultrasound applications. However, conventional continuous phase holograms are limited by three-dimensional(3D) printing size, and the presence of unavoidable small printing errors makes it difficult to achieve acoustic field reconstruction at high frequency accuracy. Here, we present an optimized discrete multi-step phase hologram. It can ensure the reconstruction quality of image with high robustness, and properly lower the requirement for the 3D printing accuracy. Meanwhile, the concept of reconstruction similarity is proposed to refine a measure of acoustic field quality. In addition, the realized complex acoustic field at 20 MHz promotes the application of acoustic holograms at high frequencies and provides a new way to generate high-fidelity acoustic fields.
基金Funded by the National Natural Science Foundation of China(No.51563017)the Natural Science Foundation of Jiangxi Province(No.20142BAB206029)
文摘A novel hybrid type photosensitive resin for stereolithography in 3D printing was prepared with bisphenol A type epoxy diacrylate (EA-612), tripropylene glycol diacrylate (TPGDA),ethoxylated trimethyolpropane triacrylate(EO3TMPTA), cycloaliphatic diepoxide(ERL-4221),polycaprolactonepolyol(Polyol-0301),1-hydroxy-cyclohphenyl ketone(Irgacure184), and a mixture of triarylsulfonium hexafluoroantimonate salts (Ar3SSbF6). The novel hybrid type photosensitive resin was the photosensitive resin of an epoxy-acrylate hybrid system, which proceeded free radical polymerization and cationic polymerization in ultraviolet (UV) laser. Cuboid parts and double-cantilever parts were fabricated by using a stereolithography apparatus with the novel hybrid type photosensitive resin as the processing material,and the dimension shrinkage factor and the curl factor were tested. The shrinkage factor was less than 2.00%,and the curl factor was less than 8.00%, which showed that the accuracy of the fabricated parts was high with the photosensitive resin for stereolithography in 3D printing.
文摘Digital Elevation Models (DEMs) depict the configuration of the earth surface and are being applied in many areas in earth and environmental sciences. In this study, the accuracy of the Advanced Land Observing Satellite World 3D Digital Surface Model version 2.1 (ALOS W3D30), the Shuttle Radar Topography Mission Digital Elevation Model version 3.0 (SRTM30) and the Advanced Space borne Thermal Emission and Reflection Radiometer Global DEM version 2.0 (ASTER GDEM2) was statistically assessed using high accuracy GPS survey data. Root-Mean-Square errors of ~5.40 m, ~7.47 m and ~20.03 m were obtained for ALOS W3D30, SRTM30 and ASTER GDEM2 respectively. In further analyses, we discovered that ALOS W3D30 and SRTM30 were much more accurate in regions where the height intervals were within 201 m - 400 m and >801 m. ALOS W3D30 proved to be the most accurate DEM that best represents the topography of the earth’s surface and could be used for some earth and environmental applications in Nigeria. We recommend that this study should serve as a guide in the use of any of these DEMs for earth and environmental applications in Nigeria.
文摘The time-domain calibration coefficient of a D-Dot sensor should be identical across various transverse electromagnetic (TEM) cells to comply with the IEEE Std 1309. However, in our previous calibration experiments, poor consistency was observed. The size of D-Dot sensors relative to TEM cells is considered the main reason for this poor consistency. Therefore, this study aims at determining the calibration coefficient of a D-Dot sensor. We calculate the theoretical coefficient as a reference. Practical calibration experiments involve the processing of TEM cells with three different sizes. To observe the response more clearly, corresponding models are constructed and numerical simulations are performed. The numerical simulations and experimental calibration are in good agreement. To determine the calibration accuracy, we quantify the accuracy using the relative error of the calibration coefficient. By comparing the coefficients obtained, it can be concluded that the perturbation error is about 15% when the relative size is over 1/3. Further, the relative size should be less than 1/5 to obtain a relative error below 10%.
文摘The objective of the work is to determine the influence of the PLA melting temperature during 3D printing on the dimensional accuracy of the model parts. Two modular drilling devices were also made using PLA model parts. The model parts were 3D printed using FDM technology and the ZMorph 2.0 hybrid 3D printer. The accuracy of 3D printing of the model part influences the realization of modular devices. In recent years, technology has evolved a lot, and the need to have the most efficient manufacturing equipment has increased. This is the reason for the development of 3D printers using FDM technology for plastic parts. The software used by these 3D printers used in FDM technology is very sophisticated, as they allow the manufacture of very precise 3D prototypes, identical to the designed 3D model, through modern additive manufacturing techniques. The quality and mechanical strength of the prototypes obtained using 3D printers is very good. The materials used by the 3D printers manufactured by FDM are cheap and accessible. These 3D printers are used to make three-dimensional objects (gears, flanges, bearings, covers, casings, mechanisms, figurines, interior and exterior design elements, architectural models, medical models).
基金Project supported partly by the National Natural Science Foundation of China (Grant Nos 10301034 and 40574069), The authors thank Professor Du Q very much for his important discussions.
文摘We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates, For anisotropic cases, the bending process of vortices is described in detail by the decrease of Gross-Pitaevskii energy. A completely straight vortex and the steady and symmetrical multiple-vortex configurations are obtained. We analyse the effect of initial conditions and angular velocity on the number and shape of vortices.
文摘In this study, we compared the motion accuracy of six degrees of freedom (6D) couch for precision radiotherapy with or without weights attached to the couch. Two digital cameras were focused on the iso-center of a linear accelerator. Images of a needle which had been fixed to the 6D couch were obtained using the cameras when the couch moved in translation and rotation around each axis. The three-dimensional (3D) coordinates of the needle were calculated from coordinate values in the images. A coordinate error of the needle position relative to the theoretical position was calculated. The errors were obtained with or without a 60 kg weight attached to the 6D couch, and these errors were compared with each other. The mean distance of the 3D error vectors for the weighted test was 0.21 ± 0.11 mm, and >0.16 ± 0.09 mm for the non-weighted test (p
基金Natural Science Foundation from Colleges and Universities of Jiangsu Province(04KJD140033)
文摘A high-speed and high-resolution optical A/D quantizer is proposed.Its architecture is discussed.Bit circuits are built by using the phase modulators in parallel.Based on the different character of the half-wave voltage for every phase modulator and the polarized bias design of incident light,the RF input signal is coled and transmitted in the form of optical digital signal.According to the principle of the architecture,the high-resolution quantizers with 8-bit and 12-bit,et al.are built,which operate at 100 GS/s.Their quantization noise is invariable almost with bit circuits increasing.The simulation result of 4-bit A/D quantizer is also given.
文摘By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir be easily described in detail. The 3D visualization and 3D interactive editing of geological structure model are the key for modeling procedure. And a high accuracy and resolution geological model has been well applied in optimizing the production scheme.
文摘This work focuses on a brief discussion of new concepts of using smartphone sensors for 3D painting in virtual or augmented reality. Motivation of this research comes from the idea of using different types of sensors which exist in our smartphones such as accelerometer, gyroscope, magnetometer etc. to track the position for painting in virtual reality, like Google Tilt Brush, but cost effectively. Research studies till date on estimating position and localization and tracking have been thoroughly reviewed to find the appropriate algorithm which will provide accurate result with minimum drift error. Sensor fusion, Inertial Measurement Unit (IMU), MEMS inertial sensor, Kalman filter based global translational localization systems are studied. It is observed, prevailing approaches consist issues such as stability, random bias drift, noisy acceleration output, position estimation error, robustness or accuracy, cost effectiveness etc. Moreover, issues with motions that do not follow laws of physics, bandwidth, restrictive nature of assumptions, scale optimization for large space are noticed as well. Advantages of such smartphone sensor based position estimation approaches include, less memory demand, very fast operation, making them well suited for real time problems and embedded systems. Being independent of the size of the system, they can work effectively for high dimensional systems as well. Through study of these approaches it is observed, extended Kalman filter gives the highest accuracy with reduced requirement of excess hardware during tracking. It renders better and faster result when used in accelerometer sensor. With the aid of various software, error accuracy can be increased further as well.
文摘A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)).