Zooplankton cyclops propagates profusely in waterbody, cannot be effectively inactivated by conventional disinfection process, and becomes a troublesome drinking water treatment problem. In this work, the qualitative ...Zooplankton cyclops propagates profusely in waterbody, cannot be effectively inactivated by conventional disinfection process, and becomes a troublesome drinking water treatment problem. In this work, the qualitative and quantitative experimental studies were carried out on inactivation of zooplankton cyclops using oxidants, such as chlorine (Cl2), chlorine dioxide (ClO2), ozone (O3), hydrogen peroxide (H2O2), ozone/hydrogen peroxide (O3/H2O2), chloramines (Cl2-NH3) and potassium permanganate (KM4nO4). The influences of various factors include different oxidant dosages, organic substance contents and pH values. The results showed that currently available oxidants used all might inactivate cyclops in some extent. According to the experimental results, chlorine dioxide, ozone, ozone/hydrogen peroxide and chloramines can be selected as effective oxidants for inactivating cyclops because of their strong inactivation abilities. Then the synergic removal effects on cyclops with ozone, ozone/hydrogen peroxide pre-oxidation followed by conventional water treatment processes were investigated, The results showed that ozone and ozone/hydrogen peroxide pre-oxidation can inactivate cyclops effectively, which then can be removed thoroughly by conventional water treatment processes. Cyclops cannot appear in water after filtration with 1.65 mg/L of ozone and 6 mg/L of hydrogen peroxide, with the inactivation rate being 62% before conventional water treatment processes. Cyclops cannot appear in water after filtration with 1.8 mg/L of ozone, with the inactivation rate being 50% before conventional water treatment processes. For different oxidants, when removal rate was the best, the inactivation rate was not the same. These results may provide reference and model for actual waterworks.展开更多
The effects of the initial framework SiO2/Al2O3 ratio and temperature on the structural changes of NaY zeolites during hydrothermal treatments are studied. Two samples with different framework SiO2/Al2O3 ratios are ...The effects of the initial framework SiO2/Al2O3 ratio and temperature on the structural changes of NaY zeolites during hydrothermal treatments are studied. Two samples with different framework SiO2/Al2O3 ratios are subjected to hydrothermal treatment at four different temperatures. For zeolite with a lower initial SiO2/Al2O3 ratio of 4.2, mesopores are easily formed because more framework aluminum is detached. Moreover, two kinds of mesopores are produced at a higher temperature due to the interconnection of vacancies and smaller mesopores. For zeolite with a higher initial SiO2/Al2O3 ratio of 6.0, there are less mesopores formed as compared with the lower initial SiO2/Al2O3 ratio sample, but there are some macropores formed. This may be attributed to the isolation of vacancies and the different distributions of aluminum in the crystal lattice of the zeolite. The experiment data show that NaY with the SiO2/Al2O3 ratio of 6.0 retains a high relative crystallinity during the hydrothermal treatment. This proves that a high framework SiO2/Al2O3 ratio benefits the stability of zeolite.展开更多
The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6...The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650℃ and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CFL and CO, among which the total molar percentage of H2 and CFL was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.展开更多
文摘目的探析经闭孔路径阴道无张力尿道中段悬吊术(tension-free vaginal tape-obturator,TVT-O)治疗女性压力性尿失禁前后患者自身症状和性生活质量的效果。方法随机选取2018年1月—2022年12月惠州市第二妇幼保健院收治的女性压力性尿失禁患者100例,按照随机数表法分为对照组(50例,腹腔镜下膀胱颈cooper韧带悬吊术)和分析组(50例,实施TVT-O手术治疗)。记录手术前后症状和尿失禁问卷简表(Incontinence Questionnaire Short Form,ICI-Q-SF)、尿失禁性功能问卷简表(Prolapse/Urinary Incontinence Sexual Questionnaire-12,PISQ-12)和尿失禁影响问卷简版(Incontinence Impact Questionnaire Short Form,IIQ-7)及1 h尿垫实验结果,综合全面分析两组自身症状和性生活质量的变化的情况,以及并发症发生率。结果术后两组患者的ICI-Q-SF、IIQ-7评分均较术前下降,PISQ-12评分较术前上升,术后患者1 h尿垫实验结果较术前明显减少,且分析组优于对照组,差异有统计学意义(P<0.05)。分析组并发症发生率为4.00%,低于对照组的10.00%,差异无统计学意义(χ^(2)=0.614,P>0.05)。结论与腹腔镜下膀胱颈cooper韧带悬吊术相比,女性压力性尿失禁患者在接受TVT-O治疗术后,可显著减少漏尿量,改善患者尿失禁严重程度,改善患者性生活质量,减少并发症,效果理想。
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2006AA06Z311)the Postdoctoral Science Foundation of Heilongjiang Province (No. LRB05-164)the Excellent Young Teacher Encouragement Project Foundation of HIT(No. HIT2006), China
文摘Zooplankton cyclops propagates profusely in waterbody, cannot be effectively inactivated by conventional disinfection process, and becomes a troublesome drinking water treatment problem. In this work, the qualitative and quantitative experimental studies were carried out on inactivation of zooplankton cyclops using oxidants, such as chlorine (Cl2), chlorine dioxide (ClO2), ozone (O3), hydrogen peroxide (H2O2), ozone/hydrogen peroxide (O3/H2O2), chloramines (Cl2-NH3) and potassium permanganate (KM4nO4). The influences of various factors include different oxidant dosages, organic substance contents and pH values. The results showed that currently available oxidants used all might inactivate cyclops in some extent. According to the experimental results, chlorine dioxide, ozone, ozone/hydrogen peroxide and chloramines can be selected as effective oxidants for inactivating cyclops because of their strong inactivation abilities. Then the synergic removal effects on cyclops with ozone, ozone/hydrogen peroxide pre-oxidation followed by conventional water treatment processes were investigated, The results showed that ozone and ozone/hydrogen peroxide pre-oxidation can inactivate cyclops effectively, which then can be removed thoroughly by conventional water treatment processes. Cyclops cannot appear in water after filtration with 1.65 mg/L of ozone and 6 mg/L of hydrogen peroxide, with the inactivation rate being 62% before conventional water treatment processes. Cyclops cannot appear in water after filtration with 1.8 mg/L of ozone, with the inactivation rate being 50% before conventional water treatment processes. For different oxidants, when removal rate was the best, the inactivation rate was not the same. These results may provide reference and model for actual waterworks.
文摘The effects of the initial framework SiO2/Al2O3 ratio and temperature on the structural changes of NaY zeolites during hydrothermal treatments are studied. Two samples with different framework SiO2/Al2O3 ratios are subjected to hydrothermal treatment at four different temperatures. For zeolite with a lower initial SiO2/Al2O3 ratio of 4.2, mesopores are easily formed because more framework aluminum is detached. Moreover, two kinds of mesopores are produced at a higher temperature due to the interconnection of vacancies and smaller mesopores. For zeolite with a higher initial SiO2/Al2O3 ratio of 6.0, there are less mesopores formed as compared with the lower initial SiO2/Al2O3 ratio sample, but there are some macropores formed. This may be attributed to the isolation of vacancies and the different distributions of aluminum in the crystal lattice of the zeolite. The experiment data show that NaY with the SiO2/Al2O3 ratio of 6.0 retains a high relative crystallinity during the hydrothermal treatment. This proves that a high framework SiO2/Al2O3 ratio benefits the stability of zeolite.
文摘The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650℃ and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CFL and CO, among which the total molar percentage of H2 and CFL was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.