Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feedi...Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feeding process achieves over 80% total nitrogen (TN) removal efficiency, but the TN removal efficiency of the A/O process is only 40%. Moreover, filamentous sludge bulking can be well restrained in the step-feeding process. Given the conditions of a returned sludge ratio of 100% and a nitrifying liquor recycle ratio of 200%, the TN removal efficiency is 78.32% in the A/O process, but the sludge volume index (SVI) value increases to 143 mL/g. In the step-feeding process, the SVI is only 94.4 mL/g when the TN removal efficiency reaches 81. 1%. The step-feeding process has distinct advantages over the A/O process in the aspects of practicability, nitrogen removal and operating stability.展开更多
The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence...The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.展开更多
Different hydraulic retention times(HRTs)were tested in a mixed anoxic/oxic(A/O)system at 5C and 10C to investigate the effects of HRT and carrier on nitrogen removal in wastewater at low temperatures.The results show...Different hydraulic retention times(HRTs)were tested in a mixed anoxic/oxic(A/O)system at 5C and 10C to investigate the effects of HRT and carrier on nitrogen removal in wastewater at low temperatures.The results showed that the addition of the fillers improved the treatment effect of each index in the system.With an optimal HRT of 7.5 h at 5C,the removal efficiencies of NHþ4-N and total nitrogen(TN)reached 91.2%and 75.6%,respectively.With an HRT of 6 h at 10C,the removal efficiencies of NHþ4-N and TN were 96.7%and 82.9%,respectively.The results of high-throughput sequencing showed that the addition of the suspended carriers in the aerobic zone could improve the treatment efficiency of nitrogen at low temperatures.The microbial analysis indicated that the addition of the suspended carriers enhanced the enrichment of nitrogen removal bacteria.Nitrospira,Nitrotoga,and Nitrosomonas were found to be the bacteria responsible for nitrification,and their relative concentrations on the biofilm at 5C and 10C accounted for 98.11%,92.79%,and 69.98%of all biological samples,respectively.展开更多
In order to improve nitrogen removal in anoxic/oxic(A/O) process effectively for treating domestic wastewaters, the influence factors, DO(dissolved oxygen), nitrate recirculation, sludge recycle, SRT(solids residence ...In order to improve nitrogen removal in anoxic/oxic(A/O) process effectively for treating domestic wastewaters, the influence factors, DO(dissolved oxygen), nitrate recirculation, sludge recycle, SRT(solids residence time), influent COD/TN and HRT(hydraulic retention time) were studied. Results indicated that it was possible to increase nitrogen removal by using corresponding control strategies, such as, adjusting the DO set point according to effluent ammonia concentration; manipulating nitrate recirculation flow according to nitrate concentration at the end of anoxic zone. Based on the experiments results, a knowledge-based approach for supervision of the nitrogen removal problems was considered, and decision trees for diagnosing nitrification and denitrification problems were built and successfully applied to A/O process.展开更多
Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. T...Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parameter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at - 86 mV and - 90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.展开更多
Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduce...Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects.展开更多
Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of...Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.展开更多
In this paper three controllers for A/O process are developed, including a DO cascade controller, an external carbon flow rate controller and an internal recycling flow rate controller. The objective of the different ...In this paper three controllers for A/O process are developed, including a DO cascade controller, an external carbon flow rate controller and an internal recycling flow rate controller. The objective of the different controllers is to control the nitrate and ammonia concentration. Simulation study demonstrated that these controllers could efficiently control nitrogen removal and meet stricter effluent quality standards at a minimum cost.展开更多
A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobi...A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.展开更多
A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (D...A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A2O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition, nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A2O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation.展开更多
基金The Project of Scientific Research Base and Scientific Innovation Platform of Beijing Municipal Education Commission (No.PXM2008-014204-050843)the Project of Beijing Science and Technology Committee (No.D07050601500000)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (No.RCEES-QN-200706)the Special Funds for Young Scholars of RCEES,CAS.
文摘Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feeding process achieves over 80% total nitrogen (TN) removal efficiency, but the TN removal efficiency of the A/O process is only 40%. Moreover, filamentous sludge bulking can be well restrained in the step-feeding process. Given the conditions of a returned sludge ratio of 100% and a nitrifying liquor recycle ratio of 200%, the TN removal efficiency is 78.32% in the A/O process, but the sludge volume index (SVI) value increases to 143 mL/g. In the step-feeding process, the SVI is only 94.4 mL/g when the TN removal efficiency reaches 81. 1%. The step-feeding process has distinct advantages over the A/O process in the aspects of practicability, nitrogen removal and operating stability.
基金Project supported by the Key International Cooperative Program of NSFC(No. 50521140075)the Hi-Tech Research and Development Program(863)of China(No. 2004AA601020)the Attached Projects of"863"Project of Beijing Municipal Science and Technology(No.20005186040421).
文摘The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.
基金supported by the National Natural Science Foundation of China(Grants No.51978233 and 52000057)the China Postdoctoral Science Foundation(Grant No.2020M680844).
文摘Different hydraulic retention times(HRTs)were tested in a mixed anoxic/oxic(A/O)system at 5C and 10C to investigate the effects of HRT and carrier on nitrogen removal in wastewater at low temperatures.The results showed that the addition of the fillers improved the treatment effect of each index in the system.With an optimal HRT of 7.5 h at 5C,the removal efficiencies of NHþ4-N and total nitrogen(TN)reached 91.2%and 75.6%,respectively.With an HRT of 6 h at 10C,the removal efficiencies of NHþ4-N and TN were 96.7%and 82.9%,respectively.The results of high-throughput sequencing showed that the addition of the suspended carriers in the aerobic zone could improve the treatment efficiency of nitrogen at low temperatures.The microbial analysis indicated that the addition of the suspended carriers enhanced the enrichment of nitrogen removal bacteria.Nitrospira,Nitrotoga,and Nitrosomonas were found to be the bacteria responsible for nitrification,and their relative concentrations on the biofilm at 5C and 10C accounted for 98.11%,92.79%,and 69.98%of all biological samples,respectively.
文摘In order to improve nitrogen removal in anoxic/oxic(A/O) process effectively for treating domestic wastewaters, the influence factors, DO(dissolved oxygen), nitrate recirculation, sludge recycle, SRT(solids residence time), influent COD/TN and HRT(hydraulic retention time) were studied. Results indicated that it was possible to increase nitrogen removal by using corresponding control strategies, such as, adjusting the DO set point according to effluent ammonia concentration; manipulating nitrate recirculation flow according to nitrate concentration at the end of anoxic zone. Based on the experiments results, a knowledge-based approach for supervision of the nitrogen removal problems was considered, and decision trees for diagnosing nitrification and denitrification problems were built and successfully applied to A/O process.
基金Supported by the Key International Cooperation Project of NSFC, Key Project of NSFC (No. 50138010)863 Hi-Technology Research and Development Program of China (2003AA601010).
文摘Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parameter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at - 86 mV and - 90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.
文摘Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects.
基金Project (2009ZX07315-002-01) supported by Water Pollution Control and Management of Major Special Science and Technology
文摘Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.
基金This work was supported by"863"Program of China (2004AA601020),The Project of Beijing Science and technology Committee(H020620010120) and the project of Beijing city key laboratory
文摘In this paper three controllers for A/O process are developed, including a DO cascade controller, an external carbon flow rate controller and an internal recycling flow rate controller. The objective of the different controllers is to control the nitrate and ammonia concentration. Simulation study demonstrated that these controllers could efficiently control nitrogen removal and meet stricter effluent quality standards at a minimum cost.
文摘A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.
基金Supported by Key Technology Research and Development Program of the Tenthfive-year plan (2001BA610A-09), the NationalNatural Science Foundation of China (No. 50478040) and 863 Hi-Technology Research and Development Program of China(No.2004AA601020)
文摘A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A2O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition, nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A2O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation.