期刊文献+
共找到256,988篇文章
< 1 2 250 >
每页显示 20 50 100
The structure-directing role of heterologous seeds in the synthesis of zeolite 被引量:2
1
作者 Haoyang Zhang Binyu Wang Wenfu Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期792-801,共10页
Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recen... Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recently applied in energy storage.Seed-assisted synthesis is a very effective approach in promoting the crystallization of zeolites.In some cases,the target zeolite cannot be formed in the absence of seed zeolite.In homologous seed-assisted synthesis,the structure of the seed zeolite is the same to that of the target zeolite,while the structure of the seed zeolite is different to that of the target zeolite in the heterologous seed-assisted synthesis.In this review,we briefly summarized the heterologous seed-assisted syntheses of zeolites and analyzed the structure-directing effect of heterologous seeds and surveyed the“common composite building units(CBUs)hypothesis”and the“common secondary building units(SBUs)hypothesis”.However,both hypotheses cannot explain all observations on the heterologous seed-assisted syntheses.Finally,we proposed that the formation of the target zeolite does need nuclei with the structure of target zeolite and the formation of the nuclei of the target zeolite can be promoted by either the undissolved seed crystals with the same CBUs or SBUs to the target zeolite or by the facilitated appropriate distribution of the specific building units due to the presence of the heterologous seed that does not have any common CBUs and SBUs with the target zeolite. 展开更多
关键词 zeolite Heterologous seed Synthesis Structure-directing effect
下载PDF
EDTA-LDH/zeolite制备及其对重金属离子的吸附
2
作者 谢修鑫 廖立兵 +2 位作者 雷馨宇 王丽娟 唐晓尉 《硅酸盐通报》 CAS 北大核心 2024年第1期370-382,共13页
用水热法和焙烧还原法两步合成了乙二胺四乙酸-水滑石/沸石(EDTA-LDH/zeolite)复合材料,并将其用于去除水溶液中的Cd^(2+)、Pb^(2+)、Cu^(2+),系统研究不同条件下EDTA-LDH/zeolite对单一及混合重金属离子溶液中Cd^(2+)、Pb^(2+)、Cu^(2+... 用水热法和焙烧还原法两步合成了乙二胺四乙酸-水滑石/沸石(EDTA-LDH/zeolite)复合材料,并将其用于去除水溶液中的Cd^(2+)、Pb^(2+)、Cu^(2+),系统研究不同条件下EDTA-LDH/zeolite对单一及混合重金属离子溶液中Cd^(2+)、Pb^(2+)、Cu^(2+)的吸附效果与吸附机制。结果表明,当EDTA-LDH/zeolite投加量为0.05 g、重金属离子浓度为1500 mg/L、pH值为6.5、吸附时间为24 h时,EDTA-LDH/zeolite吸附性能最佳。重金属离子间存在竞争吸附,EDTA-LDH/zeolite对Cd^(2+)、Pb^(2+)、Cu^(2+)的最大吸附容量分别为65.33、98.35和108.51 mg/g。去除过程中沉淀作用、表面络合、螯合反应等多种机制协同作用,去除行为均符合Langmuir等温模型与拟二阶动力学模型。 展开更多
关键词 LDH 沸石 EDTA 重金属离子 吸附性能
下载PDF
Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid
3
作者 Rui Li Qixuan Lin +3 位作者 Junli Ren Xiaobao Yang Yingxiong Wang Lingzhao Kong 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期311-320,共10页
The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural... The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose. 展开更多
关键词 FRUCTOSE Dealuminated-Hb zeolite Selective conversion FURFURAL
下载PDF
OSDA-free synthesis of FeZSM-22 zeolite from natural minerals for n-octane hydroisomerization
4
作者 Tiesen Li Ting Chen +5 位作者 Yinghui Ye Peng Dong TinghaiWang Qingyan Cui Chan Wang Yuanyuan Yue 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期51-59,共9页
A seed-directed approach to synthesizing Fe ZSM-22 zeolite without organic structure directing agent(OSDA)was developed by using Fe-rich diatomite as all aluminum and iron sources.The Fe ZSM-22zeolite with optimal cry... A seed-directed approach to synthesizing Fe ZSM-22 zeolite without organic structure directing agent(OSDA)was developed by using Fe-rich diatomite as all aluminum and iron sources.The Fe ZSM-22zeolite with optimal crystallinity and purity can be obtained by systematically adjusting feed composition and synthesis conditions.Characterizations show that Fe ZSM-22 zeolite synthesized with OSDA-free owns high crystallinity,obvious thin needle-shaped morphology and high Bronsted/Lewis acid ratio.Significantly,when used for n-octane hydroisomerization reaction,its derived catalyst exhibits the best catalytic performance reflected by the highest selectivity to C_(8)isomers compared to the two reference catalysts prepared based on a Fe-containing and a Fe-free ZSM-22 synthesized through an OSDA-directed route from natural diatomite and conventional chemicals,respectively.This work provides an alternative route to sustainably synthesizing heteroatomic zeolites with high performance. 展开更多
关键词 FeZSM-22 zeolite OSDA-free synthesis Natural minerals n-octane hydroisomerization
下载PDF
High-silica faujasite zeolite-tailored metal encapsulation for the low-temperature production of pentanoic biofuels
5
作者 Wenhao Cui Yuanshuai Liu +11 位作者 Pengfei Guo Zhijie Wu Liqun Kang Huawei Geng Shengqi Chu Linying Wang Dong Fan Zhenghao Jia Haifeng Qi Wenhao Luo Peng Tian Zhongmin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期552-560,I0012,共10页
Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulatio... Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity. 展开更多
关键词 High-silica zeolite Y Metal encapsulation Bifunctional catalysis HYDRODEOXYGENATION Biofuels
下载PDF
Facile synthesis of hierarchical NaX zeolite from natural kaolinite for efficient Knoevenagel condensation
6
作者 Wen Xiao Peng Dong +6 位作者 Chan Wang Jingdong Xu Tiesen Li Haibo Zhu Tinghai Wang Renwei Xu Yuanyuan Yue 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期75-84,共10页
Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficien... Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing. 展开更多
关键词 Hierarchical NaX zeolite Template-free synthesis Natural kaolinite Knoevenagel condensation
下载PDF
Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures
7
作者 Hammad Saulat Jianhua Yang +3 位作者 Tao Yan Waseem Raza Wensen Song Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期242-252,共11页
Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of ... Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation. 展开更多
关键词 Corrosion Dodecyltrimethoxysilane Hexadecyltrimethoxysilane Membranes Oil/water separation zeolite
下载PDF
Removal of Organochlorine from Model Oil Using Mg-Modified ZSM-5 Zeolite:Dechlorination Performance,Regeneration,and Thermodynamics 被引量:1
8
作者 Cheng Xingyuan Gu Jie +4 位作者 Huang Bingtian Bing Liancheng Han Dezhi Wang Guangjian Wang Fang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期24-32,共9页
Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were invest... Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were investigated by static adsorption experiments.The morphologies,structural features,and physicochemical properties of the adsorbents were characterized by X-ray diffraction,Brunauer-Emmett-Teller analysis,NH3 temperature-programmed desorption,scanning electron microscopy,transmission electron microscopy,and pyridine adsorption infrared spectroscopy.The Mg/ZSM-5 zeolite adsorbent possessed a relatively high specific surface area and good metal dispersion and exhibited the best dechlorination and regeneration performance.The characterization results revealed that introduction of the metal exerted a significant influence on the acidic properties of the catalyst surface.A decrease in the ratio of Brønsted acidic sites to Lewis acidic sites and an increase in the amount of moderately acidic sites were confirmed to be responsible for the excellent adsorption performance of the Mg-modified ZSM-5 zeolite.Furthermore,the Langmuir adsorption isotherm model was applied to study the adsorption equilibrium and thermodynamics of the Mg/ZSM-5 adsorbent under mild conditions.The results revealed that the removal of 1,2-dichloroethane by the Mg/ZSM-5 adsorbent was endothermic,spontaneous,disordered,and primarily involved physical adsorption. 展开更多
关键词 adsorption dechlorination ZSM-5 zeolite metal modification THERMODYNAMICS
下载PDF
Influence of A-type Zeolite on Methane Hydrate Formation 被引量:8
9
作者 臧小亚 杜建伟 +2 位作者 梁德青 樊栓狮 唐翠萍 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第5期854-859,共6页
The porous medium has an important effect on hydrate formation.In this paper,the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (... The porous medium has an important effect on hydrate formation.In this paper,the formation process and the gas storage capacity of the methane hydrate were investigated with A-type zeolite and Sodium Dodecyl Sulfate (SDS) existing in the system.The results show that A-type zeolite can influence methane hydrate formation.At the temperature of 273.5 K and pressure of 8.3 MPa,the distilled water with A-type zeolite can form methane hydrate with gaseous methane in 12 hours.The formation process of the system with A-type zeolite was quite steady and the amount of A-type zeolite can influence the gas storage capacity significantly.The adding of A-type zeolite with 0.067 g·(g water)-1 into 2×10-3 g·g-1 SDS-water solution can increase the gas storage capacity,and the maximum increase rate was 31%.Simultaneously the promotion effect on hydrate formation of 3A-type zeolite is much more obvious than that of 5A-type zeolite when the water adding amounts are 0.033 g·g-1 and 0.067 g·g-1 at the experimental conditions. 展开更多
关键词 甲烷水合物 A型沸石 十二烷基硫酸钠 储存容量 水合物形成 天然气 调查结果 多孔介质
下载PDF
Synthesis of zeolite A and zeolite X from electrolytic manganese residue,its characterization and performance for the removal of Cd^(2+)from wastewater
10
作者 Wenlei Li Huixin Jin +1 位作者 Hongyan Xie Lianren Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期31-45,共15页
Electrolytic manganese residue(EMR)can cause serious environmental and biological hazards.In order to solve the problem,zeolite A(EMRZA)and zeolite X(EMRZX)were synthesized by EMR.The pure phase zeolites were synthesi... Electrolytic manganese residue(EMR)can cause serious environmental and biological hazards.In order to solve the problem,zeolite A(EMRZA)and zeolite X(EMRZX)were synthesized by EMR.The pure phase zeolites were synthesized by alkaline melting and hydrothermal two-step process,which had high crystallinity and excellent crystal control.And the optimum conditions for synthesis of zeolite were investigated:NaOH-EMR mass ratio=1.2,L/S=10,hydrothermal temperature=90℃,and hydrothermal time=6 h.Then,EMRZA and EMRZX showed excellent adsorption of Cd^(2+).When T=25℃,time=120min,pH=6,C0=518 mg·L^(-1),and quantity of absorbent=1.5 g·L^(-1),the adsorption capacities of EMRZA and EMRZX reached 314.2 and 289,5 mg·g^(-1),respectively,In addition,after three repeated adsorption-desorption cycles,EMRZA and EMRZX retained 80%and 74%of the initial zeolites removal rates,respectively.Moreover,adsorption results followed quasi-second-order kinetics and monolayer adsorption,which was regulated by a combination of chemisorption and intra-particle diffusion mechanisms.The adsorption mechanism was ions exchange between Cd^(2+)and Na+.In summary,it has been confirmed that EMRZA and EMRZX can be reused as highly efficient adsorbents to treat Cd^(2+)-contaminated wastewater. 展开更多
关键词 Electrolytic manganese residue zeolite A zeolite X ADSORPTION Cd ions
下载PDF
Catalytic Synthesis of Hexyl-naphthalene over H-type Zeolites 被引量:1
11
作者 WEI Chang-ping SUN Xiao-fei +1 位作者 JIANG Xin-hua ZHEN Kai-ji 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第6期684-686,共3页
H-type zeolites( HY, Hβ, and HM) were synthesized and characterized by XRD, NH3-TPD, and Py-IR. Selectively catalytic alkylation of naphthalene with n-hexanol to hexyl-naphthalene over the zeolites was carried out.... H-type zeolites( HY, Hβ, and HM) were synthesized and characterized by XRD, NH3-TPD, and Py-IR. Selectively catalytic alkylation of naphthalene with n-hexanol to hexyl-naphthalene over the zeolites was carried out. The experimental results show that the catalytic activities of the zeolites are mainly determined by their acid properties and pore structures. The larger the pore diameter is, the higher the catalytic activity is. NH3-TPD profiles show that Hβ and HM have lower acid strengths than HY. HY has both the highest activity and highest selectivity for the hexylnaphthalene. Higher reaction temperatures and longer reaction time are beneficial to the production of β-hexyl-naphthalene over the HY zeolite. 展开更多
关键词 H-type zeolites NAPHTHALENE N-HEXANOL Hexylnaphthalene ALKYLATION
下载PDF
Evaluation of hollow fiber T-type zeolite membrane modules for ethanol dehydration 被引量:7
12
作者 Xuerui Wang Ji Jiang +3 位作者 Dezhong Liu Youquan Xue Chun Zhang Xuehong Gu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期581-586,共6页
This work presents the design of hollow fiber T-type zeolite membrane modules with different geometric configurations. The module performances were evaluated by pervaporation dehydration of ethanol/water mixtures. Str... This work presents the design of hollow fiber T-type zeolite membrane modules with different geometric configurations. The module performances were evaluated by pervaporation dehydration of ethanol/water mixtures. Strong concentration polarization was found for the modules with big membrane bundles. The concentration polarization was enhanced at high temperature due to the higher water permeation flux. The increase of feed flow could improve water permeation flux for the membrane modules with small membrane bundle.Computational fluid dynamics was used to visualize the flow field distribution inside of the modules with different configurations. The membrane module with seven bundles exhibited highest separation efficiency due to the uniform distribution of flow rate. The packing density could be 10 times higher than that of the tubular membrane module. The hollow fiber membrane module exhibited good stability for ethanol dehydration. 展开更多
关键词 中空纤维膜组件 乙醇脱水 分子筛 性能评价 T型 计算流体力学 几何构型 浓差极化
下载PDF
Synthesis of an IMF zeolite membrane for the separation of xylene isomer
13
作者 Wenwen Zhang Zhigang Xue +4 位作者 Liyun Cui Haoliang Gao Di Zhao Rongfei Zhou Weihong Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期205-211,共7页
The synthesis of a continuous IMF zeolite membrane was fabricated on tubular substrates by seeded growth for the first time. The straight channels of IMF zeolite with diameters of 0.53–0.59 nm are distinguishable for... The synthesis of a continuous IMF zeolite membrane was fabricated on tubular substrates by seeded growth for the first time. The straight channels of IMF zeolite with diameters of 0.53–0.59 nm are distinguishable for p-xylene from o-xylene molecules. Pure IMF-phase high-silica IM-5 zeolite seeds with uniform and fine crystal size were fabricated by a new sonication-assisted aging process. The seeds were coated on the support by dipcoating and induced the formation of continuous membrane. Separation performance in p-/o-xylene mixture was investigated at various temperature and pressure. The typical IM-5zeolite membrane had p-/o-xylene separation factor of 3.7. Our results suggest that IM-5 zeolite is a potentially good membrane material for the separation of xylene mixtures. 展开更多
关键词 Membranes zeolites SEPARATION XYLENE Secondary growth
下载PDF
Elucidating the effect of oxides on the zeolite catalyzed alkylation of benzene with 1-dodecene
14
作者 Shiyong Xing Yan Cui +2 位作者 Tiefeng Wang Jinwei He Minghan Han 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期126-135,共10页
In the present work, the effect of oxides on the alkylation of benzene with 1-dodecene was comprehensively investigated over MCM-49 n-heptanol, n-heptaldehyde and n-heptanoic acid were selected as the model oxides her... In the present work, the effect of oxides on the alkylation of benzene with 1-dodecene was comprehensively investigated over MCM-49 n-heptanol, n-heptaldehyde and n-heptanoic acid were selected as the model oxides herein, and obvious decrease of lifetime could be caused by only trace amount of oxides added in the feedstocks. However, the deactivated catalysts were difficult to be regenerated by extraction with hot benzene. Additionally, coke-burning was also proved to be incapable to regenerate the deactivated catalysts mainly for the dealumination during calcination. Further characterizations complementary with DFT calculations were conducted to demonstrate that the deactivation was mainly due to the firm adsorption of oxides on the acid sites. 展开更多
关键词 zeolite 1-DODECENE ALKYLATION OXIDES DEACTIVATION
下载PDF
Synthesis,Characterization of NaA Zeolite from Blast Furnace Slag(BFS)via Alkaline Fusion and Hydrothermal Treatment
15
作者 LI Changxin LI Xiaoya +1 位作者 LI Chaoyang LI Li 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期401-407,共7页
A blast furnace slag zeolite(BFSZ)material was successfully synthesized from BFS by alkaline fusion and hydrothermal treatment.Via the analyses of XRD,FT-IR,FE-SEM,XRF,CEC and BET surface area measurement,when zeolite... A blast furnace slag zeolite(BFSZ)material was successfully synthesized from BFS by alkaline fusion and hydrothermal treatment.Via the analyses of XRD,FT-IR,FE-SEM,XRF,CEC and BET surface area measurement,when zeolite was synthesized at a crystallization temperature of 100℃with initial Si/Al ratio of 1:1,the main composition in the product is Na-A zeolite.Under the above conditions,the BFSZ was synthesized with CEC of 3.06 meq/g and maximum BET surface area of 37.55 m^(2)·g^(-1).Moreover,the incorporating of BFS-derived minor metals(such as Mg,Fe,and Ca)are found to be of little importance for the synthesis of BFSZ.Thus the obtained BFSZ material has a great adsorption performance for removing Mn^(2+),Cu^(2+),and NH_(4)^(+)ions diluted in water,owing to the higher CEC. 展开更多
关键词 blast furnace slag CONVERSION zeolite CHARACTERIZATION ADSORPTION
下载PDF
Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites
16
作者 Baoyu Liu Feng Xiong +4 位作者 Jianwen Zhang Manna Wang Yi Huang Yanxiong Fang Jinxiang Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期1-7,共7页
Novel organo-inorganic hybrid materials(MTW-x-SO_(3)H) have been fabricated by immobilizing 3-mercap topropyltriethoxysilane onto mesopore MTW zeolites, which is treated via a simple oxidation process with hydrogen pe... Novel organo-inorganic hybrid materials(MTW-x-SO_(3)H) have been fabricated by immobilizing 3-mercap topropyltriethoxysilane onto mesopore MTW zeolites, which is treated via a simple oxidation process with hydrogen peroxide as the oxidant to transform sulfhydryl group into sulfonic acid group. The organic sulfhydryl groups are covalently bonded to the external surface of MTW zeolites through the condensation between siloxane arising from organic fragments with silanol groups on the surface of MTW zeolites, the hybrids contain sulfonic acid group within the external surface of MTW zeolites and an opened mesoporous system in the matrix of MTW zeolites, which provide enough accessible Brùnsted acid sites for the alkylation between phenol with tert-butyl alcohol. Through this methodology it's possible to prepare multifunctional materials where the plenty of mesopores are benefit for the introduction of larger numbers of sulfonic acid groups that contributes to activity during reactions, resulting in high activity(>55%) of MTW-4-SO_(3)H and desired selectivity(>56%) of 2-TBP(2-tert-butyl phenol) in the alkylation between phenol with tert-butyl alcohol. 展开更多
关键词 MTW zeolites ACIDITY Catalysis ALKYLATION
下载PDF
Silicalite-1 zeolite encapsulated Fe nanocatalyst for Fenton-like degradation of methylene blue
17
作者 Hongwei Guo Linyuan Chen +2 位作者 Xueying Zhang Huanhao Chen Yan Shao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期251-259,共9页
Encapsulation of Fe nanoparticles in zeolite is a promising way to significantly improve the catalytic activity and stability of Fe-based catalysts during the degradation process of organic pollutants.Herein,Fe nanoca... Encapsulation of Fe nanoparticles in zeolite is a promising way to significantly improve the catalytic activity and stability of Fe-based catalysts during the degradation process of organic pollutants.Herein,Fe nanocatalysts were encapsulated into silicalite-1(S-1)zeolite by using a ligand-protected method(with dicyandiamide(DCD)as a organic ligand)under direct hydrothermal synthesis condition.High-resolution transmission electron microscopy(HRTEM)results confirmed the high dispersion of Fe nanocatalysts which were successfully encapsulated within the voids among the primary particles of the S-1 zeolite.The developed S-1 zeolite encapsulated Fe nanocatalyst(Fe@S-1)exhibited significantly improved catalytic activity and reusability in the catalytic degradation process of methylene blue(MB).Specifically,the developed Fe0.021@S-1 catalyst showed high catalytic degradation activity,giving a high MB degradation efficiency of 100%in 30 min,outperformed the conventional impregnated catalyst(Fe/S-1).Moreover,the Fe@S-1 catalyst afforded an outstanding stability,showing only ca.7.9%activity loss after five cycling tests,while the Fe/S-1 catalyst presented a significantly activity loss of 50.9%after only three cycles.Notably,the encapsulation strategy enabled a relatively lower Fe loading in the Fe@S-1 catalyst in comparison with that of the Fe/S-1 catalyst,i.e.,0.35%vs.0.81%(mass).Radical scavenging experiments along with electron spin resonance(ESR)measurements confirmed that the major role ofOH in the MB degradation process.Specifically,Fe@S-1 catalyst with high molar ratio of[Fe(DCD)]Cl3 is beneficial to form Fe complexes/nanoclusters in the voids(which has large pore size of 1–2 nm)among the primary particles of the zeolite,and thus improving the diffusion and accessibility of reactants to Fe active sites,and thus exhibiting a relatively higher degradation efficiency.This work demonstrates that zeolite-encapsulated Fe nanocatalysts present potential applications in the advanced oxidation of wastewater treatment. 展开更多
关键词 zeolite ENCAPSULATION Fe nanocatalyst Degradation Methylene blue
下载PDF
Y Zeolites Modified by Organosilane for Toluene Adsorption under High Humidity Condition
18
作者 Boyu Zhang Kuo Zhang +2 位作者 Ziqiang Duan Jianping Zhu Junan Gao 《American Journal of Analytical Chemistry》 2023年第10期451-466,共16页
Y zeolites have moderate microporous pore size, large specific surface area, and good hydrothermal stability, which were widely used in industrial adsorption of volatile organic compounds (VOCs), but the performance o... Y zeolites have moderate microporous pore size, large specific surface area, and good hydrothermal stability, which were widely used in industrial adsorption of volatile organic compounds (VOCs), but the performance of Y zeolites in adsorption of VOCs under high humidity conditions is terrible. In this paper, Y zeolites with different silica-alumina ratios were hydrophobically modified by organosilane and characterized by XRD, FTIR, SEM, BET, NMR. In the experiments of static and dynamic adsorption of VOCs by modified Y zeolites, it can be concluded that the static water adsorption capacity of Y zeolites with silica-aluminum ratio of 5 and 40 after silica modification decreased by 62 wt% and 53 wt%, under the conditions of high humidity, GHSV = 15,000 h<sup>-1</sup>, T = 35°C and initial concentration of toluene C<sub>0</sub> = 5000 mg·m<sup>-3</sup>. The saturation adsorption capacity of toluene was increased from 0.06 g·g<sup>-1</sup>, 0.09 g·g<sup>-1</sup> to 0.15 g·g<sup>-1</sup>, 0.21 g·g<sup>-1</sup>, the adsorption selectivity of Y zeolites for water was reduced and that for toluene was increased after Vapor phase silanization overlay modification. The present modification method might carry out targeted modification of zeolites surface, provide research ideas and guidance under high humidity conditions. 展开更多
关键词 Y zeolites Hydrophobic Modification Volatile Organic Compounds TOLUENE
下载PDF
Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane
19
作者 Meihua Zhu Xingguo An +3 位作者 Tian Gui Ting Wu Yuqin Li Xiangshu Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期176-181,共6页
Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),K... Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility. 展开更多
关键词 NaY zeolite membrane Ion-exchange PERVAPORATION
下载PDF
Efficient synthesis of bioetheric fuel additive by combining the reductive and direct etherification of furfural in one-pot over Pd nanoparticles deposited on zeolites
20
作者 Xiaowen Guo Haihong Wu +2 位作者 Peng Wu Mingyuan He Yejun Guan 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期519-529,共11页
Furfuryl ethers have been considered to be a promising fuel additive.One step reduction etherification of furfural over supported Pd catalysts provides a facile way for the preparation of furfuryl ether.However,the pr... Furfuryl ethers have been considered to be a promising fuel additive.One step reduction etherification of furfural over supported Pd catalysts provides a facile way for the preparation of furfuryl ether.However,the preparation of a reusable Pd catalyst for reductive etherification remains to be a great challenge.In this study,a series of Si O_(2)supported Pd catalysts with particle size ranging from 2.2 nm to 28 nm were prepared.Their textural properties and catalytic performance in furfural reductive etherification have been systematically studied.The results herein shed light on the particle size effect on the competition between hydrogenation/hydrogenolysis of C=O in furfural over Pd surface.We found out that Pd nanoparticles larger than 3 nm are preferred for one step reductive etherification.Based on this finding,we prepared a Pd/ZSM-5 bifunctional catalyst comprising Pd nanoparticles larger than 3 nm and decreased acidity in presence of amino organosilane,which served as a bifunctional catalyst succeeding in one-pot synthesis of ether via reductive-etherification and direct-etherification.This strategy showed significant advantage in efficiently converting furfuryl acohol,a major side-product,into ether,while suppressing the undesired side-reactions. 展开更多
关键词 ETHERIFICATION FURFURAL Palladium zeolite Amino organosilane
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部