This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denote...This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.展开更多
Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular...Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular theory(KMTOA) is proposed. In the KMTOA three operators are designed: attraction, repulsion and wave. The attraction operator simulates the molecular attraction, with the molecules moving towards the optimal ones, which makes possible the optimization. The repulsion operator simulates the molecular repulsion, with the molecules diverging from the optimal ones. The wave operator simulates the thermal molecules moving irregularly, which enlarges the searching spaces and increases the population diversity and global searching ability. Experimental results indicate that KMTOA prevails over other algorithms in the robustness, solution quality, population diversity and convergence speed.展开更多
This paper proposes new heuristic distributed parallel algorithms for search-ing and planning, which are based on the concepts of wave concurrent prop-agations and competitive activation mechanisms. These algorithms a...This paper proposes new heuristic distributed parallel algorithms for search-ing and planning, which are based on the concepts of wave concurrent prop-agations and competitive activation mechanisms. These algorithms are char-acterized by simplicity and clearness of control strategies for searching, anddistinguished abilities in many aspects, such as high speed processing, widesuitability for searching AND/OR implicit graphs, and ease in hardware imple-mentation.展开更多
To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) an...To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path.展开更多
The wheeled or crawled robots often suffer from big obstacles or ditches, so a hopping robot needs to fit the tough landform in the field environments. In order to jump over obstacles rapidly, a jumping sequence must ...The wheeled or crawled robots often suffer from big obstacles or ditches, so a hopping robot needs to fit the tough landform in the field environments. In order to jump over obstacles rapidly, a jumping sequence must be generated based on the landform information from sensors or user input. The planning method for planar mobile robots is compared with that of hopping robots. Several factors can change the planning result. Adjusting these coefficients, a heuristic searching algorithm for the jumping sequence is developed on a simplified landform. Calculational result indicates that the algorithm can achieve safety and efficient control sequences for a desired goal.展开更多
针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲...针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。展开更多
文摘This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.
基金Project(61174140)supported by the National Natural Science Foundation of ChinaProject(13JJA002)supported by Hunan Provincial Natural Science Foundation,ChinaProject(20110161110035)supported by the Doctoral Fund of Ministry of Education of China
文摘Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular theory(KMTOA) is proposed. In the KMTOA three operators are designed: attraction, repulsion and wave. The attraction operator simulates the molecular attraction, with the molecules moving towards the optimal ones, which makes possible the optimization. The repulsion operator simulates the molecular repulsion, with the molecules diverging from the optimal ones. The wave operator simulates the thermal molecules moving irregularly, which enlarges the searching spaces and increases the population diversity and global searching ability. Experimental results indicate that KMTOA prevails over other algorithms in the robustness, solution quality, population diversity and convergence speed.
文摘This paper proposes new heuristic distributed parallel algorithms for search-ing and planning, which are based on the concepts of wave concurrent prop-agations and competitive activation mechanisms. These algorithms are char-acterized by simplicity and clearness of control strategies for searching, anddistinguished abilities in many aspects, such as high speed processing, widesuitability for searching AND/OR implicit graphs, and ease in hardware imple-mentation.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61261007,61002049)the Key Program of Yunnan Natural Science Foundation(Grant No.2013FA008)
文摘To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path.
文摘The wheeled or crawled robots often suffer from big obstacles or ditches, so a hopping robot needs to fit the tough landform in the field environments. In order to jump over obstacles rapidly, a jumping sequence must be generated based on the landform information from sensors or user input. The planning method for planar mobile robots is compared with that of hopping robots. Several factors can change the planning result. Adjusting these coefficients, a heuristic searching algorithm for the jumping sequence is developed on a simplified landform. Calculational result indicates that the algorithm can achieve safety and efficient control sequences for a desired goal.
文摘针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。