Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbin...Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbine exit casing). However, the engine weight should not be increased and the aerodynamic performance must be at least the same. This paper compares the sound power level of a state-of-the-art TEC (reference TEC) with typical EGVs with an aerodynamically optimised TEC configuration for the engine operating point approach. It is shown that a significant weight reduction (only bladings considered) and reduction in engine length can be achieved but the sound power level for the fundamental tone (lst blade passing frequency) for this acoustically important operating point is increased. It is also shown that the losses of the aerodynamical optimised EGVs are higher for this off design point but significantly lower at the aero design point. Measurements were conducted in the STTF (subsonic test turbine facility) at the Institute for Thermal Turbo machinery and Machine Dynamics, Graz University of Technology. The inlet guide vanes, the LPT (low pressure turbine) stage, and the EGVs have been designed by MTU Aero Engines.展开更多
Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Mi...Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Military Medicine, 181: 59-69), an empirical injury model was constructed for exposure to multiple sound impulses of equal intensity. Building upon the empirical injury model, we conduct a mathematical study of the hearing loss injury caused by multiple impulses of non-uniform intensities. We adopt the theoretical framework of viewing individual sound exposures as separate injury causing events, and in that framework, we examine synergy for causing injury (fatigue) or negative synergy (immunity) or independence among a sequence of doses. Starting with the empirical logistic dose-response relation and the empirical dose combination rule, we show that for causing injury, a sequence of sound exposure events are not independent of each other. The phenomenological effect of a preceding event on the subsequent event is always immunity. We extend the empirical dose combination rule, which is applicable only in the case of homogeneous impulses of equal intensity, to accommodate the general case of multiple heterogeneous sound exposures with non-uniform intensities. In addition to studying and extending the empirical dose combination rule, we also explore the dose combination rule for the hypothetical case of independent events, and compare it with the empirical one. We measure the effect of immunity quantitatively using the immunity factor defined as the percentage of decrease in injury probability attributed to the sound exposure in the preceding event. Our main findings on the immunity factor are: 1) the immunity factor is primarily a function of the difference in SELA (A- weighted sound exposure level) between the two sound exposure events;it is virtually independent of the magnitude of the two SELA values as long as the difference is fixed;2) the immunity factor increases monotonically from 0 to 100% as the first dose is varied from being significantly below the second dose, to being moderately above the second dose. The extended dose-response formulation developed in this study provides a theoretical framework for assessing the injury risk in realistic situations.展开更多
文摘Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbine exit casing). However, the engine weight should not be increased and the aerodynamic performance must be at least the same. This paper compares the sound power level of a state-of-the-art TEC (reference TEC) with typical EGVs with an aerodynamically optimised TEC configuration for the engine operating point approach. It is shown that a significant weight reduction (only bladings considered) and reduction in engine length can be achieved but the sound power level for the fundamental tone (lst blade passing frequency) for this acoustically important operating point is increased. It is also shown that the losses of the aerodynamical optimised EGVs are higher for this off design point but significantly lower at the aero design point. Measurements were conducted in the STTF (subsonic test turbine facility) at the Institute for Thermal Turbo machinery and Machine Dynamics, Graz University of Technology. The inlet guide vanes, the LPT (low pressure turbine) stage, and the EGVs have been designed by MTU Aero Engines.
文摘Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Military Medicine, 181: 59-69), an empirical injury model was constructed for exposure to multiple sound impulses of equal intensity. Building upon the empirical injury model, we conduct a mathematical study of the hearing loss injury caused by multiple impulses of non-uniform intensities. We adopt the theoretical framework of viewing individual sound exposures as separate injury causing events, and in that framework, we examine synergy for causing injury (fatigue) or negative synergy (immunity) or independence among a sequence of doses. Starting with the empirical logistic dose-response relation and the empirical dose combination rule, we show that for causing injury, a sequence of sound exposure events are not independent of each other. The phenomenological effect of a preceding event on the subsequent event is always immunity. We extend the empirical dose combination rule, which is applicable only in the case of homogeneous impulses of equal intensity, to accommodate the general case of multiple heterogeneous sound exposures with non-uniform intensities. In addition to studying and extending the empirical dose combination rule, we also explore the dose combination rule for the hypothetical case of independent events, and compare it with the empirical one. We measure the effect of immunity quantitatively using the immunity factor defined as the percentage of decrease in injury probability attributed to the sound exposure in the preceding event. Our main findings on the immunity factor are: 1) the immunity factor is primarily a function of the difference in SELA (A- weighted sound exposure level) between the two sound exposure events;it is virtually independent of the magnitude of the two SELA values as long as the difference is fixed;2) the immunity factor increases monotonically from 0 to 100% as the first dose is varied from being significantly below the second dose, to being moderately above the second dose. The extended dose-response formulation developed in this study provides a theoretical framework for assessing the injury risk in realistic situations.