为了解拟南芥中Dicer-like蛋白对tRNA衍生的小RNA(tRNA-derived small RNAs,tsRNAs)的产生有何影响,对拟南芥野生型和不同Dicer-like(DCL)基因突变体进行tRNA-seq测序,并分析tsRNA和tRNA的表达量.结果显示,DCL4基因突变后tsRNA的表达量...为了解拟南芥中Dicer-like蛋白对tRNA衍生的小RNA(tRNA-derived small RNAs,tsRNAs)的产生有何影响,对拟南芥野生型和不同Dicer-like(DCL)基因突变体进行tRNA-seq测序,并分析tsRNA和tRNA的表达量.结果显示,DCL4基因突变后tsRNA的表达量明显降低,说明DCL4可能参与tsRNA的产生.拟南芥tRC1位点(Chr1:21268000-21310000)具有大量串联分布的tRNA序列,通过对RNA介导的甲基化(RdDM)途径相关基因CLSY1突变体中tRC1位点的24 nt siRNA和tsRNA进行分析,推断tRC1位点的tsRNA受RdDM途径负调控.综上,本研究鉴定到DCL4在tsRNA生成中的潜在作用,部分tsRNA的生成与RdDM途径有关.展开更多
Leaf adaxial-abaxial(ad-abaxial)polarity is crucial for leaf morphology and function,but the genetic machinery governing this process remains unclear.To uncover critical genes involved in leaf ad-abaxial patterning,we...Leaf adaxial-abaxial(ad-abaxial)polarity is crucial for leaf morphology and function,but the genetic machinery governing this process remains unclear.To uncover critical genes involved in leaf ad-abaxial patterning,we applied a combination of in silico prediction using machine learning(ML)and experimental analysis.A Random Forest model was trained using genes known to influence ad-abaxial polarity as ground truth.Gene expression data from various tissues and conditions as well as promoter regulation data derived from transcription factor chromatin immunoprecipitation sequencing(ChIP-seq)was used as input,enabling the prediction of novel ad-abaxial polarity-related genes and additional transcription factors.Parallel to this,available and newly-obtained transcriptome data enabled us to identify genes differentially expressed across leaf ad-abaxial sides.Based on these analyses,we obtained a set of 111 novel genes which are involved in leaf ad-abaxial specialization.To explore implications for vegetable crop breeding,we examined the conservation of expression patterns between Arabidopsis and Brassica rapa using single-cell transcriptomics.The results demonstrated the utility of our computational approach for predicting candidate genes in crop species.Our findings expand the understanding of the genetic networks governing leaf ad-abaxial differentiation in agriculturally important vegetables,enhancing comprehension of natural variation impacting leaf morphology and development,with demonstrable breeding applications.展开更多
With the rapid development of modern molecular biology and bioinformatics,many studies have proved that transcription factors play an important role in regulating the growth and development of plants.SPATULA(SPT)belon...With the rapid development of modern molecular biology and bioinformatics,many studies have proved that transcription factors play an important role in regulating the growth and development of plants.SPATULA(SPT)belongs to the bHLH transcription family and participates in many processes of regulating plant growth and development.This review systemically summarizes the multiple roles of SPT in plant growth,development,and stress response,including seed germination,flowering,leaf size,carpel development,and root elongation,which is helpful for us to better understand the functions of SPT.展开更多
文摘为了解拟南芥中Dicer-like蛋白对tRNA衍生的小RNA(tRNA-derived small RNAs,tsRNAs)的产生有何影响,对拟南芥野生型和不同Dicer-like(DCL)基因突变体进行tRNA-seq测序,并分析tsRNA和tRNA的表达量.结果显示,DCL4基因突变后tsRNA的表达量明显降低,说明DCL4可能参与tsRNA的产生.拟南芥tRC1位点(Chr1:21268000-21310000)具有大量串联分布的tRNA序列,通过对RNA介导的甲基化(RdDM)途径相关基因CLSY1突变体中tRC1位点的24 nt siRNA和tsRNA进行分析,推断tRC1位点的tsRNA受RdDM途径负调控.综上,本研究鉴定到DCL4在tsRNA生成中的潜在作用,部分tsRNA的生成与RdDM途径有关.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFF1003003)the Central Public-interest Scientific Institution Basal Research Fund (Grant No.Y2023PT16)+1 种基金the Agricultural Science and Technology Innovation Program (ASTIP)supported by China Scholarship Council (Grant No.202103250097)。
文摘Leaf adaxial-abaxial(ad-abaxial)polarity is crucial for leaf morphology and function,but the genetic machinery governing this process remains unclear.To uncover critical genes involved in leaf ad-abaxial patterning,we applied a combination of in silico prediction using machine learning(ML)and experimental analysis.A Random Forest model was trained using genes known to influence ad-abaxial polarity as ground truth.Gene expression data from various tissues and conditions as well as promoter regulation data derived from transcription factor chromatin immunoprecipitation sequencing(ChIP-seq)was used as input,enabling the prediction of novel ad-abaxial polarity-related genes and additional transcription factors.Parallel to this,available and newly-obtained transcriptome data enabled us to identify genes differentially expressed across leaf ad-abaxial sides.Based on these analyses,we obtained a set of 111 novel genes which are involved in leaf ad-abaxial specialization.To explore implications for vegetable crop breeding,we examined the conservation of expression patterns between Arabidopsis and Brassica rapa using single-cell transcriptomics.The results demonstrated the utility of our computational approach for predicting candidate genes in crop species.Our findings expand the understanding of the genetic networks governing leaf ad-abaxial differentiation in agriculturally important vegetables,enhancing comprehension of natural variation impacting leaf morphology and development,with demonstrable breeding applications.
文摘With the rapid development of modern molecular biology and bioinformatics,many studies have proved that transcription factors play an important role in regulating the growth and development of plants.SPATULA(SPT)belongs to the bHLH transcription family and participates in many processes of regulating plant growth and development.This review systemically summarizes the multiple roles of SPT in plant growth,development,and stress response,including seed germination,flowering,leaf size,carpel development,and root elongation,which is helpful for us to better understand the functions of SPT.