Friction stir spot welding with refilling by friction forming process (FSSW-FFP) was successfully modified using filler plate. Both of this new refilling technique and conventional friction stir spot welding (FSSW...Friction stir spot welding with refilling by friction forming process (FSSW-FFP) was successfully modified using filler plate. Both of this new refilling technique and conventional friction stir spot welding (FSSW) process were used to weld A1 6061-T6 lap shear specimens and the results were compared. Effects of tool rotational speeds on mechanical and metallurgical properties in both the cases were studied. Static shear strength of refilled weld samples was found to be better than those welded by conventional FSSW process at all tool rotational speeds. This is explained in terms of effective increase in cross-sectional area of weld nugget due to addition of more material from filler plate, thereby eliminating the probe hole. Failure mechanisms were discussed and fracture surfaces were analyzed through scanning electron microscopy (SEM). The hardness profile of the welds exhibited a W-shaped appearance in both the processes and the minimum hardness was measured in the HAZ.展开更多
基金The author would like to acknowledge financial support fromthe Office of Naval Research grant ONR-N0014-03-1-0351material supply from ALCOAProfessor H G Wadley of the University of Virginia
文摘Friction stir spot welding with refilling by friction forming process (FSSW-FFP) was successfully modified using filler plate. Both of this new refilling technique and conventional friction stir spot welding (FSSW) process were used to weld A1 6061-T6 lap shear specimens and the results were compared. Effects of tool rotational speeds on mechanical and metallurgical properties in both the cases were studied. Static shear strength of refilled weld samples was found to be better than those welded by conventional FSSW process at all tool rotational speeds. This is explained in terms of effective increase in cross-sectional area of weld nugget due to addition of more material from filler plate, thereby eliminating the probe hole. Failure mechanisms were discussed and fracture surfaces were analyzed through scanning electron microscopy (SEM). The hardness profile of the welds exhibited a W-shaped appearance in both the processes and the minimum hardness was measured in the HAZ.