The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morpholo...The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.展开更多
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib...The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.展开更多
A novel Pd/Al 2O 3 catalyst prepared by glow discharge plasma technology is reported.The results of H 2-chemisorption indicate that palladium dispersion of the plasma-prepared Pd/Al 2O 3 reaches 29.7%,which is about 5...A novel Pd/Al 2O 3 catalyst prepared by glow discharge plasma technology is reported.The results of H 2-chemisorption indicate that palladium dispersion of the plasma-prepared Pd/Al 2O 3 reaches 29.7%,which is about 5 times higher than Pd/Al 2O 3 prepared by conventional preparation.Meanwhile,the particle diameter of the plasma-prepared catalyst is 3.8 nm, but the particle diameter of the conventional catalyst is 20.4 nm.Such plasma-prepared Pd/Al 2O 3 catalyst shows a higher activity for catalytic combustion of methane than the conventional catalyst.Methane conversion reaches 90% at 400 ℃, but it is only near 30% for the conventional catalyst at the same temperature.展开更多
基金Project(2652014017) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.
文摘The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.
文摘A novel Pd/Al 2O 3 catalyst prepared by glow discharge plasma technology is reported.The results of H 2-chemisorption indicate that palladium dispersion of the plasma-prepared Pd/Al 2O 3 reaches 29.7%,which is about 5 times higher than Pd/Al 2O 3 prepared by conventional preparation.Meanwhile,the particle diameter of the plasma-prepared catalyst is 3.8 nm, but the particle diameter of the conventional catalyst is 20.4 nm.Such plasma-prepared Pd/Al 2O 3 catalyst shows a higher activity for catalytic combustion of methane than the conventional catalyst.Methane conversion reaches 90% at 400 ℃, but it is only near 30% for the conventional catalyst at the same temperature.