期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Bonding enhancement of cold rolling TA1 P-Ti/AA6061 composite plates via surface oxidation treatment
1
作者 Lun FU Bin YANG +2 位作者 Yun-chang GUO Chao YU Hong XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2864-2880,共17页
TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti... TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%. 展开更多
关键词 TA1 P-Ti/aa6061 composite plate oxidation treatment annealing treatment cold roll bonding
下载PDF
Microstructural characterization and mechanical properties of friction surfaced AA2024-Ag composites 被引量:6
2
作者 Parisa PIRHAYATI Hamed JAMSHIDI AVAL 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1756-1770,共15页
The effects of Ag on the microstructure, mechanical properties, and electrical conductivity of AA2024 aluminum alloy coating were investigated. It was fabricated by friction surfacing as an additive manufacturing proc... The effects of Ag on the microstructure, mechanical properties, and electrical conductivity of AA2024 aluminum alloy coating were investigated. It was fabricated by friction surfacing as an additive manufacturing process. To carry out this investigation, Ag was added by 5.3, 10.6, and 16.0 wt.% to an AA2024 consumable rod by inserting holes in it. It was found that due to the strengthening by solid solution and the formation of precipitates and intermetallic containing Ag, the driving force for grain growth is reduced and consequently the grain size of the coating is decreased. After artificial aging heat treatment, the electrical conductivities of the coatings containing 0 and 16.0 wt.% Ag are increased by 4.15%(IACS) and decreased by 2.15%(IACS), respectively. While considering a linear relationship, it can be proposed that for a 1 wt.% Ag increase, the strength and hardness of the coating will be increased by 1.8% and 1.0%, respectively. It was established that the effect of Al6(Cu,Ag)Mg4 precipitate formation on strengthening is greater than that of Ag-rich intermetallic. 展开更多
关键词 friction surfacing aa2024 aluminum alloy Ag powder aa2024-Ag composite
下载PDF
Microstructure and mechanical properties of rutile-reinforced AA6061 matrix composites produced via stir casting process 被引量:2
3
作者 Subramanya R.PRABHU Arun K.SHETTIGAR +1 位作者 Mervin A.HERBERT Shrikantha S.RAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第11期2229-2236,共8页
A novel process of fabricating aluminium matrix composites(AMCs)with requisite properties by dispersing rutile particles in the aluminum matrix was studied.A novel bi-stage stir casting method was employed to prepare ... A novel process of fabricating aluminium matrix composites(AMCs)with requisite properties by dispersing rutile particles in the aluminum matrix was studied.A novel bi-stage stir casting method was employed to prepare composites,by varying the mass fractions of the rutile particles as 1%,2%,3%and 4%in AA6061 matrix.The density,tensile strength,hardness and microstructures of composites were investigated.Bi-stage stir casting method engendered AMCs with uniform distribution of the reinforced rutile particles in the AA6061 matrix.This was confirmed by the enhancement of the properties of AMCs over the parent base material.Rutile-reinforced AMCs exhibited higher tensile strength and hardness as compared with unreinforced parent material.The properties of the composites were enhanced with the increase in the mass fraction of the rutile particles.However,beyond 3 wt.%of rutile particles,the tensile strength decreased.The hardness and tensile strength of the AMCs reinforced with 3 wt.%of rutile were improved by 36%and 14%respectively in comparison with those of matrix alone. 展开更多
关键词 aa6061-rutile composite bi-stage stir casting microstructure mechanical properties FRACTOGRAPHY
下载PDF
Non-isothermal aging behavior of in-situ AA2024−Al_(3)NiCu composite 被引量:3
4
作者 Ramezanali FARAJOLLAHI Hamed JAMSHIDI AVAL Roohollah JAMAATI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2125-2137,共13页
The effect of non-isothermal aging treatment on microstructure and mechanical properties of in-situ AA2024−Al_(3)NiCu composite fabricated by the stir casting process was examined.The Al_(3)NiCu intermetallic was crea... The effect of non-isothermal aging treatment on microstructure and mechanical properties of in-situ AA2024−Al_(3)NiCu composite fabricated by the stir casting process was examined.The Al_(3)NiCu intermetallic was created by adding 3 wt.%nickel powder during stir casting and homogenization treatment at 500℃ for 24 h after casting.The microstructural results obtained using optical and scanning electron microscope indicate that,after non-isothermal aging treatment,the S-Al_(2)CuMg precipitates become finer,forming a poor zone of this precipitate in the area between the dendrites.Also,adding nickel during stir casting reduces the precipitation rate and the contribution of S-Al_(2)CuMg precipitates in strengthening composite during non-isothermal aging.The maximum hardness,ultimate tensile strength,and toughness achieved in the 3 wt.%nickel-containing sample after non-isothermal aging at 250℃ are(121.30±4.21)HV,(221.67±8.31)MPa,and(1.67±0.08)MJ/m^(3),respectively.The maximum hardness and ultimate tensile strength of AA2024−Al_(3)NiCu composite are decreased by 6%and 4%,respectively,compared to those of nickel-free AA2024 aluminum alloy. 展开更多
关键词 aa2024 aluminum matrix composite stir casting method non-isothermal aging treatment Al_(3)NiCu reinforcement
下载PDF
Microstructure and mechanical properties of hot extruded 6016 aluminum alloy/graphite composites 被引量:7
5
作者 Mohamed M.El-Sayed Seleman Mohamed M.Z.Ahmed Sabbah Ataya 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第9期1580-1591,共12页
The incorporation of graphite particles into AA6016 aluminum alloy matrix to fabricate metal/ceramic composites is still a great challenge and various parameters should be considered. In this study, dense AA6016 alumi... The incorporation of graphite particles into AA6016 aluminum alloy matrix to fabricate metal/ceramic composites is still a great challenge and various parameters should be considered. In this study, dense AA6016 aluminum alloy/(0-20 wt%) graphite composites have successfully been fabricated by powder metallurgy process. At first, the mixed aluminum and graphite powders were cold compacted at 200 MPa and then sintered at 500 ℃ for 1 h followed by hot extrusion at 450 ℃. The influence of ceramic phases(free graphite and in-situ formed carbides) on microstructure, physical and mechanical properties of the produced composites were finally investigated. The results show that the fabricated composites have a relative density of over 98%. SEM observations indicate that the graphite has a good dispersion in the alloy matrix even at high graphite content. Hardness of all the produced composites was higher than that of aluminum alloy matrix. No cracks were observed at strain less than 23% for all hot extruded materials.Compressive strength, reduction in height, ultimate tensile stress, fracture stress, yield stress, and fracture strain of all Al/graphite composites were determined by high precision second order equations. Both compressive and ultimate tensile strengths have been correlated to microstructure constituents with focusing on the in-situ formed ceramic phases, silicon carbide(SiC) and aluminum carbide(Al4 C3). The ductile fracture mode of the produced composites became less dominant with increasing free graphite content and in-situ formed carbides. Wear resistance of Al/graphite composites was increased with increasing graphite content. Aluminum/20 wt% graphite composite exhibited superior wear resistance over that of AA6016 aluminum alloy. 展开更多
关键词 aa6016/graphite composites Hot extrusion In-situ carbides Mechanical properties Wear resistance Fracture behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部