期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
AAA+ ClpB chaperone as a potential virulence factor of pathogenic microorganisms: Other aspect of its chaperone function
1
作者 Joanna Krajewska Sabina Kedzierska-Mieszkowska 《Advances in Bioscience and Biotechnology》 2014年第1期31-35,共5页
We describe and discuss the most recent findings on the activity and function of the oligomeric AAA+ chaperone ClpB from the Hsp100 protein family in pathogenic microorganisms. Pathogens are exposed to significant str... We describe and discuss the most recent findings on the activity and function of the oligomeric AAA+ chaperone ClpB from the Hsp100 protein family in pathogenic microorganisms. Pathogens are exposed to significant stress during infection of the host cells, frequently resulting in protein aggregation. The fact that ClpB is usually up-regulated in pathogens together with its immune reactivity suggests that ClpB acting as a protein disaggregase may be important for pathogen invasion and virulence. However, the specific function of ClpB in pathogenicity is still unclear. Since it is known that ClpB does not exist in mammals, it may serve as a potential target for the development of an effective therapy against several major bacterial diseases that do not respond to conventional antibiotics. 展开更多
关键词 aaa+ATPase CLPB Molecular Chaperone VIRULENCE PATHOGENS
下载PDF
Inhibition of HBV Replication by VPS4B and Its Dominant Negative Mutant VPS4B-K180Q In Vivo 被引量:1
2
作者 夏剑波 王维鹏 +3 位作者 李磊 刘贽 刘敏 杨东亮 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第3期311-316,共6页
This study examined the anti-hepatitis B virus (HBV) effect of wild-type (WT) vacuolar protein sorting 4B (VPS4B) and its dominant negative (DN) mutant VPS4B-K180Q in vivo in order to further explore the relat... This study examined the anti-hepatitis B virus (HBV) effect of wild-type (WT) vacuolar protein sorting 4B (VPS4B) and its dominant negative (DN) mutant VPS4B-K180Q in vivo in order to further explore the relationship between HBV and the host cellular factor VPS4. VPS4B gene was amplified from Huh7 cells by RT-PCR and cloned into the eukaryotic expression vector pXF3H. Then, the VPS4B plasmid and the VPS4B-K180Q mutation plasmid were constructed by using the overlap extension PCR site-directed mutagenesis technique. VPS4B and HBV vectors were co-delivered into mice by the hydrodynamic tail-vein injection to establish HBV vector-based models. Quantities of HBsAg and HBeAg in the mouse sera were determined by ElectroChemiLuminescence (ECL). HBV DNA in sera was measured by real-time quantitative PCR. Southern blot analysis was used to assay the intracellular HBV nuclear capsid-related DNA, real-time quantitative PCR to detect the HBV-related mRNA and immunohistochemical staining to observe the HBcAg expression in the mouse liver tissues. Our results showed that VPS4B and its mutant VPS4B-K180Q could decrease the levels of serum HBsAg, HBeAg and HBV-DNA. In addition, the HBV DNA replication and the mRNA level of HBV in the liver tissues of treated mice could be suppressed by VPS4B and VPS4B-K180Q. It was also found that VPS4B and VPS4B-K180Q had an ability to inhibit core antigen expression in the infected mouse liver. Furthermore, the anti-HBV effect of mutant VPS4B-K180Q was more potent than that of wild-type VPS4B. Taken together, it was concluded that VPS4B and its DN mutant VPS4B-K180Q have anti-HBV effect in vivo, which helps develop molecular therapeutic strategies for HBV infection. 展开更多
关键词 hepatitis B virus vacuolar protein sorting aaa ATPase
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部