期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
OsMas1,a novel maspardin protein gene,confers tolerance to salt and drought stresses by regulating ABA signaling in rice 被引量:4
1
作者 WANG Fei-bing WAN Chen-zhong +9 位作者 NIU Hao-fei QI Ming-yang LI Gang ZHANG Fan HU Lai-bao YE Yu-xiu WANG Zun-xin PEI Bao-lei CHEN Xin-hong YUAN Cai-yong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期341-359,共19页
Drought and salt stresses,the major environmental abiotic stresses in agriculture worldwide,affect plant growth,crop productivity,and quality.Therefore,developing crops with higher drought and salt tolerance is highly... Drought and salt stresses,the major environmental abiotic stresses in agriculture worldwide,affect plant growth,crop productivity,and quality.Therefore,developing crops with higher drought and salt tolerance is highly desirable.This study reported the isolation,biological function,and molecular characterization of a novel maspardin gene,OsMas1,from rice.The OsMas1 protein was localized to the cytoplasm.The expression levels of OsMas1 were up-regulated under mannitol,PEG6000,NaCl,and abscisic acid(ABA) treatments in rice.The OsMas1 gene was introduced into the rice cultivar Zhonghua 11(wild type,WT).OsMas1-overexpression(OsMas1-OE) plants exhibited significantly enhanced salt and drought tolerance;in contrast,OsMas1-interference(OsMas1-RNAi) plants exhibited decreased tolerance to salt and drought stresses,compared with WT.OsMas1-OE plants exhibited enhanced hypersensitivity,while OsMas1-RNAi plants showed less sensitivity to exogenous ABA treatment at both germination and post-germination stages.ABA,proline and K+ contents and superoxide dismutase(SOD),catalase(CAT),peroxidase(POD),and photosynthesis activities were significantly increased.In contrast,malonaldehyde(MDA),hydrogen peroxide(H2O2),superoxide anion radical(O2-··),and Na+ contents were significantly decreased in OsMas1-OE plants compared with OsMas1-RNAi and WT plants.Overexpression of OsMas1 up-regulated the genes involved in ABA signaling,proline biosynthesis,reactive oxygen species(ROS)-scavenging system,photosynthesis,and ion transport under salt and drought stresses.Our results indicate that the OsMas1 gene improves salt and drought tolerance in rice,which may serve as a candidate gene for enhancing crop resistance to abiotic stresses. 展开更多
关键词 aba signaling OsMas1 gene RICE salt and drought tolerance
下载PDF
Roles of ABA Signal Transduction during Higher Plant Seed Development and Germination 被引量:5
2
作者 Shao Hongbo Liang Zongsuo Shao Mingan 《Forestry Studies in China》 CAS 2003年第4期45-53,共9页
ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal trans... ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal transduction at the molecular level is crucial to biology and ecology, and rational breeding complied with corresponding eco-environmental changes. Great advancements have taken place over the past 10 years by application of the Arabidopsis experimental system. Many components involved in ABA signal transduction have been isolated and identified and a clear overall picture of gene expression and control for this transduction has become an accepted fact. On the basis of the work in our laboratory, in conjunction with the data available at the moment, the authors have attempted to integrate ABA signal transduction pathways into a common one and give some insights into the relationship between ABA signal transduction and other hormone signal transduction pathways, with an emphasis upon the ABA signal transduction during higher plant seed development. A future challenge in this field is that different experimental systems are applied and various receptors and genes need to be characterized through the utilization of microarray chips. 展开更多
关键词 molecular biology aba signal transduction aba-responsive genes seed development environmental stresses
下载PDF
Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple
3
作者 WANG Chu-kun ZHAO Yu-wen +5 位作者 HAN Peng-liang YU Jian-qiang HAO Yu-jin XU Qian YOU Chun-xiang HU Da-gang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第8期2264-2274,共11页
Auxin response factors(ARFs)play key roles throughout the whole process of plant growth and development,and mediate auxin response gene transcription by directly binding with auxin response elements(AuxREs).However,th... Auxin response factors(ARFs)play key roles throughout the whole process of plant growth and development,and mediate auxin response gene transcription by directly binding with auxin response elements(AuxREs).However,their functions in abiotic stresses are largely limited,especially in apples.Here,the auxin response factor gene MdARF2(HF41569)was cloned from apple cultivar‘Royal Gala’(Malus×domestica Borkh.).Phylogenetic analysis showed that ARF2 proteins are highly conserved among different species and MdARF2 is the closest relative to PpARF2 of Prunus persica,but they differ at the DNA level.MdARF2 contains three typical conserved domains including the B3 DNAbinding domain,Auxin_resp domain and AUX_IAA domain.The subcellular localization demonstrated that MdARF2 is localized in the nucleus.The three-dimensional structure prediction of the proteins showed that MdARF2 is highly similar with AtARF2,and they contain helices,folds,and random coils.The promoter of MdARF2 contains cis-acting elements which respond to various stresses,as well as environmental and hormonal signals.Expression analysis showed that MdARF2 is widely expressed in all tissues of apple,with the highest expression of MdARF2 in root.Functional analysis with a series of MdARF2 transgenic apple calli indicated that MdARF2 can reduce the sensitivity to ABA signaling and enhance salt tolerance in apple.In summary,the results of this research provide a new basis for studying the regulation of abiotic stresses by ARFs. 展开更多
关键词 aba signaling APPLE MdARF2 salt stress
下载PDF
Mepiquat chloride priming confers the ability of cotton seed to tolerate salt by promoting ABA-operated GABA signaling control of the ascorbate–glutathione cycle
4
作者 QI Qian WANG Ning +9 位作者 RUAN Sijia MUHAMMAD Noor ZHANG Hengheng SHI Jianbin DONG Qiang XU Qinghua SONG Meizhen YAN Gentu ZHANG Xiling WANG Xiangru 《Journal of Cotton Research》 CAS 2023年第4期288-305,共18页
Background Ensuring that seeds germinate and emerge normally is a prerequisite for cotton production,esp.in areas with salinized soil.Priming with mepiquat chloride(MC)can promote seed germination and root growth unde... Background Ensuring that seeds germinate and emerge normally is a prerequisite for cotton production,esp.in areas with salinized soil.Priming with mepiquat chloride(MC)can promote seed germination and root growth under salt stress,but its mechanism has not been fully elucidated.In this study,physiological and biochemical experiments revealed that MC-priming promotes the tolerance of cotton seeds to salt stress by increasing the ability of antioxidant enzymes related to the ascorbate-glutathione(AsA-GSH)cycle to scavenge reactive oxygen species(ROS).Results Results revealed that treatment with inhibitors of abscisic acid(ABA)and γ-aminobutyric acid(GABA)biosynthesis reduced the positive effects of MC-priming.Similarly,MC-priming increased the contents of ABA and GABA under salt stress by stimulating the expression levels of GhNCED2 and GhGAD4 and the activity of calmodulin-binding(CML)glutamate decarboxylase(GAD).Further analysis showed that an inhibitor of ABA synthesis reduced the positive impacts of MC-priming on the content of GABA under salt stress,but the content of ABA was not affected by the GABA synthesis inhibitor.Furthermore,a multi-omics analysis revealed that MC-priming increased the abundance and phosphorylation levels of the proteins related to ABA signaling,CML,and Ca^(2+)channels/transporters in the MC-primed treatments,which resulted in increased oscillations in Ca^(2+)in the MC-primed cotton seeds under salt stress.Conclusion In summary,these results demonstrate that MC-mediated ABA signaling operates upstream of the GABA synthesis generated by GAD by activating the oscillations of Ca^(2+)and then enhancing activity of the AsA-GSH cycle,which ensures that cotton seeds are tolerant to salt stress. 展开更多
关键词 Seed priming Salinity stress aba signaling γ-aminobutyric acid ROS scavenging Mepiquat chloride
下载PDF
Zinc finger protein ZFP36 and pyruvate dehydrogenase kinase PDK1 function in ABA-mediated aluminum tolerance in rice
5
作者 Nana Su Yanning Gong +6 位作者 Xin Hou Xing Liu Sergey Shabala Vadim Demidchik Min Yu Mingyi Jiang Liping Huang 《The Crop Journal》 SCIE CSCD 2024年第5期1483-1495,共13页
Aluminum(Al)toxicity poses a significant constraint on field crop yields in acid soils.Zinc finger protein36(ZFP36)is well-documented for its pivotal role in enhancing tolerance to both drought and oxidative stress in... Aluminum(Al)toxicity poses a significant constraint on field crop yields in acid soils.Zinc finger protein36(ZFP36)is well-documented for its pivotal role in enhancing tolerance to both drought and oxidative stress in rice.This study unveils a novel function of ZFP36 modulated by abscisic acid(ABA)-dependent mechanisms,specifically aimed at alleviating Al toxicity in rice.Under Al stress,the expression of ZFP36significantly increased through an ABA-dependent pathway.Knocking down ZFP36 heightened Al sensitivity,while overexpressing ZFP36 conferred increased resistance to Al stress.Additionally,our investigations revealed a physical interaction between ZFP36 and pyruvate dehydrogenase kinase 1 in rice(OsPDK1).Biochemical assays further elucidated that OsPDK1 phosphorylates ZFP36 at the amino acid site 73–161.Subsequent experiments demonstrated that ZFP36 positively regulates the expression of ascorbate peroxidases(OsAPX1)and OsALS1 by binding to specific elements in their upstream segments in rice.Through genetic and phenotypic analyses,we unveiled that OsPDK1 influences ABA-triggered antioxidant defense to alleviate Al toxicity by interacting with ZFP36.In summary,our study underscores that pyruvate dehydrogenase kinase 1(OsPDK1)phosphorylates ZFP36 to modulate the activities of antioxidant enzymes via an ABA-dependent pathway,influencing tolerance of rice to soil Al toxicity. 展开更多
关键词 ZFP36 OsPDK1 aba signaling Aluminum tolerance
下载PDF
NCED3基因雌二醇诱导表达对ABA合成酶基因和代谢酶基因表达的影响 被引量:8
6
作者 魏开发 贾文锁 +1 位作者 林子英 蔡月琴 《湖北民族学院学报(自然科学版)》 CAS 2009年第1期70-75,80,共7页
胞内ABA信号系统是否存在正反馈调节,一直存在争论.借助于雌二醇诱导的基因表达体系,对ABA合成关键酶基因NCED3超表达,结果发现,由于NCED3限速酶基因的高表达提高了内源ABA信号水平,进而上调了ABA合成酶基因ZEP、AAO3等的表达水平,也激... 胞内ABA信号系统是否存在正反馈调节,一直存在争论.借助于雌二醇诱导的基因表达体系,对ABA合成关键酶基因NCED3超表达,结果发现,由于NCED3限速酶基因的高表达提高了内源ABA信号水平,进而上调了ABA合成酶基因ZEP、AAO3等的表达水平,也激活了代谢酶基因CYP707A3的表达.研究显示内源ABA信号水平存在正负两种反馈调节机制,植物特定生理过程中ABA信号池的高低是两种调节的协同结果. 展开更多
关键词 aba合成酶基因 雌二醇 aba信号系统 反馈调节
下载PDF
Ca^2+、ABA预处理蝴蝶兰类原球茎的脱水保护系统比较及信号传导关系
7
作者 刘福平 《基因组学与应用生物学》 CAS CSCD 北大核心 2011年第6期707-713,共7页
CaCl2和ABA溶液及两者联合分别预处理蝴蝶兰类原球茎(PLB)后脱水,对比PLB脱水前后的成活率、脱水保护系统指标变化及Ca2+与ABA信号传导关系。结果表明,CaCl2和ABA溶液及两者联合预处理均能明显提高PLB脱水后的成活率。CaCl2和ABA溶液对... CaCl2和ABA溶液及两者联合分别预处理蝴蝶兰类原球茎(PLB)后脱水,对比PLB脱水前后的成活率、脱水保护系统指标变化及Ca2+与ABA信号传导关系。结果表明,CaCl2和ABA溶液及两者联合预处理均能明显提高PLB脱水后的成活率。CaCl2和ABA溶液对可溶性糖、蔗糖、还原糖、SOD和总抗氧化能力有相同的效应趋势,对可溶性蛋白、热稳定蛋白含量及POD、CAT活性的作用趋势有所差异。ABA溶液提高PLB耐脱水性的能力被胞质Ca2+螯合剂BAPTA/AM和钙调蛋白拮抗剂氯丙嗪所削弱,Ca2+预处理提高PLB耐脱水能力被ABA合成抑制剂环丙嘧啶醇削弱。在蝴蝶兰PLB的耐脱水性诱导中,Ca2+和ABA具有基本相同的生理生化基础,在信号传递中两者互相关联,CaCl2取代ABA用于提高PLB耐脱水性是可行的。 展开更多
关键词 蝴蝶兰类原球茎 Ca2+aba 预处理 脱水保护系统 信号传导
下载PDF
拟南芥中一个与ABA信号途径相关未知蛋白质的研究初报
8
作者 秦晓克 黄跃 +4 位作者 杨笑瑒 蒋彦 李旭锋 Erwin Grill 杨毅 《中国农业科技导报》 CAS CSCD 2007年第3期112-117,共6页
利用酵母双杂交系统在拟南芥cDNA文库中筛选出1个与ABI2有相互作用的未知蛋白质(AC)。在酵母系统中的进一步研究表明,AC与ABI1、ABI2有相互作用,其作用依赖于ABI1、ABI2的PP2C活性。在大肠杆菌中表达和纯化了与预测结果一致的AC蛋白质... 利用酵母双杂交系统在拟南芥cDNA文库中筛选出1个与ABI2有相互作用的未知蛋白质(AC)。在酵母系统中的进一步研究表明,AC与ABI1、ABI2有相互作用,其作用依赖于ABI1、ABI2的PP2C活性。在大肠杆菌中表达和纯化了与预测结果一致的AC蛋白质。构建了真核过量表达载体,转化拟南芥后筛选和鉴定出转基因AC植株。转基因植株的生理性状分析表明,AC基因的过量表达降低了植物对ABA敏感性。研究初步证明AC可能是脱落酸信号传导途径中的1个新信号分子。 展开更多
关键词 脱落酸信号传导 未知蛋白质AC 转基因拟南芥 酵母双杂交系统
下载PDF
LJbiquitin--Proteasome System in ABA Signaling: From Perception to Action 被引量:22
9
作者 Feifei Yu Yaorong Wu Qi Xie 《Molecular Plant》 SCIE CAS CSCD 2016年第1期21-33,共13页
Protein post-translational modification (PTM) by ubiquitination has been observed during many aspects of plant growth, development, and stress responses. The ubiquitin-proteasome system precisely regulates phytohorm... Protein post-translational modification (PTM) by ubiquitination has been observed during many aspects of plant growth, development, and stress responses. The ubiquitin-proteasome system precisely regulates phytohormone signaling by affecting protein activity, localization, assembly, and interaction ability. Absci- sic acid (ABA) is a major phytohormone, and plays important roles in plants under normal or stressed growth conditions. The ABA signaling pathway is composed of phosphatases, kinases, transcription fac- tors, and membrane ion channels. It has been reported that multiple ABA signaling transducers are sub- jected to the regulations by ubiquitination. In particular, recent studies have identified different types of E3 ligases that mediate ubiquitination of ABA receptors in different cell compartments. This review focuses on modulation of these components by monoubiquitination or polyubiquitination that occurs in the plasma membrane, endomembranes, and from the cytosol to the nucleus; this implies the existence of retrograde and trafficking processes that are regulated by ubiquitination in ABA signaling. A number of single-unit E3 ligases, components of multi-subunit E3 ligases, E2s, and specific subunits of the 26S proteasome involved in ABA signal regulation are discussed. Dissecting the precise functions of ubiquitination in the ABA pathway may help us understand key factors in the signaling of other phytohormones regulated by ubiqui- tination and other types of PTMs. 展开更多
关键词 UBIQUITINATION aba signaling aba receptor E3 ligase protein post-translational modification transcription factor
原文传递
The JA-to-ABA signaling relay promotes lignin deposition for wound healing in Arabidopsis
10
作者 Huimin Xu Chaoqun Dong +10 位作者 Ying Wu Shasha Fu Arfa Tauqeer Xinyun Gu Qianfang Li Xufang Niu Peng Liu Xiaoyue Zhang Chuanyou Li Meng Li Shuang Wu 《Molecular Plant》 SCIE CSCD 2024年第10期1594-1605,共12页
Plants are frequently exposed to herbivory and mechanical damage that result in wounding.Two fundamental strategies,regeneration and healing,are employed by plants upon wounding.How plants make different decisions and... Plants are frequently exposed to herbivory and mechanical damage that result in wounding.Two fundamental strategies,regeneration and healing,are employed by plants upon wounding.How plants make different decisions and how wound healing is sustained until the damaged tissues recover are not fully understood.In this study,we found that local auxin accumulation patterns,determined by wounding modes,may activate different recovery programs in wounded tissues.Wounding triggers transient jasmonic acid(JA)signaling that promotes lignin deposition in the first few hours after wounding occurs.This early response is subsequently relayed to ABA signaling via MYC2.The induced JA signaling promotes ABA biosynthesis to maintain the expression of RAP2.6,a key factor for sustained lignin biosynthesis and the later wound-healing process.Our findings provide mechanistic insights into how plants heal from wounding and clarify the molecular mechanisms that underlie the prolonged healing process following wounding. 展开更多
关键词 wound healing lignin deposition JA signaling aba signaling RAP2.6
原文传递
Drought-triggered repression of miR166 promotes drought tolerance in soybean
11
作者 Chen Zhao Jingjing Ma +7 位作者 Chen Yan Yu Jiang Yaohua Zhang Yudan Lu Ye Zhang Suxin Yang Xianzhong Feng Jun Yan 《The Crop Journal》 SCIE CSCD 2024年第1期154-163,共10页
Drought stress limits agricultural productivity worldwide.Identifying and characterizing genetic components of drought stress-tolerance networks may improve crop resistance to drought stress.We show that the regulator... Drought stress limits agricultural productivity worldwide.Identifying and characterizing genetic components of drought stress-tolerance networks may improve crop resistance to drought stress.We show that the regulatory module formed by miR166 and its target gene,ATHB14-LIKE,functions in the regulation of drought tolerance in soybean(Glycine max).Drought stress represses the accumulation of miR166,leading to upregulation of its target genes.Optimal knockdown of miR166 in the stable transgenic line GmSTTM166 conferred drought tolerance without affecting yield.Expression of ABA signaling pathway genes was regulated by the miR166-mediated regulatory pathway,and ATHB14-LIKE directly activates some of these genes.There is a feedback regulation between ATHB14-LIKE and MIR166 genes,and ATHB14-LIKE inhibits MIR166 expression.These findings reveal that drought-triggered regulation of the miR166-mediated regulatory pathway increases plants drought resistance,providing new insights into drought stress regulatory network in soybean. 展开更多
关键词 SOYBEAN Drought stress miRNA aba signaling
下载PDF
ROP11 GTPase Negatively Regulates ABA Signaling by Protecting ABI1 Phosphatase Activity from Inhibition by the ABA Receptor RCAR1/PYL9 in Arabidopsis 被引量:15
12
作者 Zixing Li Zheng Li +6 位作者 Xiang Gao Viswanathan ChinnusamyI Ray Bressant Zhi-Xin Wang Jian-Kang Zhu Jia-Wei Wu Dong Liu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2012年第3期180-188,共9页
The phytohormone abscisic acid (ABA) regulates many key processes in plants, such as seed germina- tion, seedling growth, and abiotic stress tolerance. In recent years, a minimal set of core components of a major AB... The phytohormone abscisic acid (ABA) regulates many key processes in plants, such as seed germina- tion, seedling growth, and abiotic stress tolerance. In recent years, a minimal set of core components of a major ABA signaling pathway has been discovered. These components include a RCAR/PYR/PYL family of ABA receptors, a group of PP2C phosphatases, and three SnRK2 kinases. However, how the interactions between the receptors and their targets are regulated by other proteins remains largely unknown. In a companion paper published in this issue, we showed that ROP11, a member of the plant- specific Rho-like small GTPase family, negatively regulates multiple ABA responses in Arabidopsis. The current work demonstrated that the constitutively active ROP11 (CA-ROP11) can modulate the RCAR1/PYL9-mediated ABA signaling pathway based on reconstitution assays in Arabidopsis thaliana protoplasts. Furthermore, using luciferase complementation imaging, yeast two-hybrid assays, co- immunoprecipitation assays in Nicotiana benthamiana and bimolecular fluorescence complementation assays, we demonstrated that CA-ROP11 directly interacts with ABI1, a signaling component downstream of RCAR1/PYL9. Finally, we provided biochemical evidence that CA-ROP11 protects ABI1 phosphatase activity from inhibition by RCAR1/PYL9 and thus negatively regulates ABA signaling in plant cells. A model of how ROP11 acts to negatively regulate ABA signaling is presented. 展开更多
关键词 ROP11 GTPase aba signaling RCAR1/PYL9A ABI1 Arabidopsis.
原文传递
Counteraction of ABA-Mediated Inhibition of Seed Germination and Seedling Establishment by ABA Signaling Terminator in Arabidopsis 被引量:13
13
作者 Zhijuan Wang Ziyin Ren +13 位作者 Chunhong Cheng Tao Wang Hongtao Ji Yang Zhao Zhiping Deng Liya Zhi Jingjing Lu Xinying Wu Shimin Xu Mengmeng Cao Hongtao Zhao Liu Liu Jiankang Zhu Xia Li 《Molecular Plant》 SCIE CAS CSCD 2020年第9期1284-1297,共14页
Seed germination and seedling establishment are important for the reproductive success of plants,but seeds and seedlings typically encounter constantly changing environmental conditions.By inhibiting seed germination ... Seed germination and seedling establishment are important for the reproductive success of plants,but seeds and seedlings typically encounter constantly changing environmental conditions.By inhibiting seed germination and post-germinative growth through the PYR1/PYL/RCAR ABA receptors and PP2C co-receptors,the phytohormone abscisic acid(ABA)prevents premature germination and seedling growth under unfavorable conditions.However,little is known about how the ABA-mediated inhibition of seed germination and seedling establishment is thwarted.Here,we report that ABA Signaling Terminator(ABT),a WD40 protein,efficiently switches off ABA signaling and is critical for seed germination and seedling establishment.ABT is induced by ABA in a PYR1/PYL/RCAR-PP2C-dependent manner.Overexpression of ABT promotes seed germination and seedling greening in the presence of ABA,whereas knockout of ABT has the opposite effect.We found that ABT interacts with the PYR1/PYL/RCAR and PP2C proteins,interferes with the interaction between PYR1/PYL4 and ABI1/ABI2,and hampers the inhibition of ABI1/ABI2 by ABA-bound PYR1/PYL4,thereby terminating ABA signaling.Taken together,our results reveal a core mechanism of ABA signaling termination that is critical for seed germination and seedling establishment in Arabidopsis. 展开更多
关键词 aba ABT aba signaling PYR1/PYL7RCAR-aba-PP2Cs complex seed germination post-germinative development
原文传递
HOS3, an ELO-Like Gene, Inhibits Effects of ABA and Implicates a S-1-P/Ceramide Control System for Abiotic Stress Responses in Arabidopsis thaliana 被引量:7
14
作者 Tanya M. Quist Irina Sokolchik +5 位作者 Huazhong Shi Robert J. Joly Ray A. Bressan Albino Maggio Meena Narsimhan Xia Li 《Molecular Plant》 SCIE CAS CSCD 2009年第1期138-151,共14页
A hyper-osmotically sensitive mutant of Arabidopsis thaliana, designated hos3-1 (high expression of osmotically responsive genes), was identified based on its hyper-luminescence of RD29A:LUC promoter fusion plants ... A hyper-osmotically sensitive mutant of Arabidopsis thaliana, designated hos3-1 (high expression of osmotically responsive genes), was identified based on its hyper-luminescence of RD29A:LUC promoter fusion plants upon treatment with NaCI and ABA. These responses implicate the disrupted gene as a direct or indirect negative regulator of the RD29A stress-responsive pathway. By sequencing the flanking regions of the T-DNA borders, it was determined that the disrupted gene is at locus At4g36830, annotated as encoding a putative protein with high homology to CIG30 (ELO2/FEN1). CIG30 has been implicated in synthesis of very long chain fatty acids (VLCFA), which are essential precursors for sphingolipids and ceramides. Altered stress responses characteristic of ABA-hypersensitivity, including reduced root growth inhibition and reduced germination with ABA treatment and reduced water loss from leaves, were exhibited by allelic hos3-1 and hos3-2 mutants. The hos3-2 mutant is partially suppressed in its transcript abundance and is inherited as a recessive trait. Further, the HOS30RF under the control of the 35SCaMV promoter restored wild-type NaCI- and ABA-root growth sensitivity as well as RD29A:LUC luminescence in mutant plants. We also show here that the HOS3 wild-type gene functionally complements the sensitivity of elo2 and elo3 yeast mutants to monensin. Furthermore, both hos3-1 and hos3-2 alleles shared increased sensitivity to the herbicide Metolachlor, which inhibits acyl chain elongation in synthesis of VLCFA, and HOS3 functionally complemented both elo2 and elo3 and restored levels of VLCFA. Together, these data establish that HOS3 inhibits ABA-mediated stress responses and implicate the VLCFA pathway and products as control points for several aspects of abiotic stress signaling and responses. The results also provide support for a role of ceramide in the control of stomatal behavior. 展开更多
关键词 Abiotic stress ARABIDOPSIS aba signal pathway STOMATA very long chain fatty acid pathway.
原文传递
Rheostatic Control of ABA Signaling through HOS15-Mediated OST1 Degradation 被引量:6
15
作者 Akhtar Ali Jae Kyoung Kim +16 位作者 Masood Jan Haris Ali Khan Irfan Ullah Khan Mingzhe Shen Junghoon Park Chae Jin Lim Shah Hussain Dongwon Baek Kai Wang Woo Sik Chung Vicente Rubio Sang Yeol Lee Zhizhong Gong Woe Yeon Kim Ray ABressan Jose MPardo Dae-Jin Yun 《Molecular Plant》 SCIE CAS CSCD 2019年第11期1447-1462,共16页
Dehydrating stresses trigger the accumulation of abscisic acid(ABA),a key plant stress-signaling hormone that activates Snf1-Related Kinases(SnRK2s)to mount adaptive responses.However,the regulatory circuits that term... Dehydrating stresses trigger the accumulation of abscisic acid(ABA),a key plant stress-signaling hormone that activates Snf1-Related Kinases(SnRK2s)to mount adaptive responses.However,the regulatory circuits that terminate the SnRK2s signal relay after acclimation or post-stress conditions remain to be defined.Here,we show that the desensitization of the ABA signal is achieved by the regulation of OST1(SnRK2.6)protein stability via the E3-ubiquitin ligase HOS15.Upon ABA signal,HOS15-induced degradation of OST1 is inhibited and stabilized OST1 promotes the stress response.When the ABA signal terminates,protein phosphatases ABI1/2 promote rapid degradation of OST1 via HOS15.Notably,we found that even in the presence of ABA,OST1 levels are also depleted within hours of ABA signal onset.The unexpected dynamics of OST1 abundance are then resolved by systematic mathematical modeling,demonstrating a desensitizing feedback loop by which OST1-induced upregulation of ABI1/2 leads to the degradation of OST1.This model illustrates the complex rheostat dynamics underlying the ABA-induced stress response and desensitization. 展开更多
关键词 aba signaling drought stress HOS15 OST1 ABI1/2 protein degradation and stability
原文传递
NUA and ESD4 negatively regulate ABA signaling during seed germination 被引量:1
16
作者 Xiaona Cui Mengyang Lv +4 位作者 Yuanyuan Cao Ziwen Li Yan Liu Zhenzhen Ren Hairong Zhang 《Stress Biology》 2022年第1期211-222,共12页
The phytohormone abscisic acid(ABA)plays important roles in plant growth,development and adaptative responses to abiotic stresses.SNF1-related protein kinase 2s(SnRK2)are key components that activate the ABA core sign... The phytohormone abscisic acid(ABA)plays important roles in plant growth,development and adaptative responses to abiotic stresses.SNF1-related protein kinase 2s(SnRK2)are key components that activate the ABA core signaling pathway.NUCLEAR PORE ANCHOR(NUA)is a component of the nuclear pore complex(NPC)that involves in deSU-MOylation through physically interacting with the EARLY IN SHORT DAYS 4(ESD4)SUMO protease.However,it is not clear how NUA functions with SnRK2 and ESD4 to regulate ABA signaling.In our study,we found that nua loss-of-function mutants exhibited pleiotropic ABA-hypersensitive phenotype.We also found that ABA-responsive genes remarkably up-regulated in nua by exogenous ABA.The nua snrk2.2 snrk2.3 triple mutant and nua abi5 double mutant partially rescued the ABA-hypersensitive phenotype of nua,thereby suggesting that NUA is epistatic to SnRK2s.Additionally,we observed that esd4-3 mutant was also ABA-hypersensitive.NUA and ESD4 were further demonstrated to physically interact with SnRK2s and negatively regulate ABA signaling by reducing SnRK2s stability.Taken together,our findings uncover a new regulatory mechanism that can modulate ABA signaling. 展开更多
关键词 aba signaling SnRK2 SUMOYLATION NUA ESD4
原文传递
Tyrosylprotein sulfotransferase suppresses ABA signaling via sulfation of SnRK2.2/2.3/2.6
17
作者 Jun Wang Chunyan Wang +6 位作者 Tianrun Wang Shizhong Zhang Kang Yan Guodong Yang Changai Wu Chengchao Zheng Jinguang Huang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第8期1846-1851,共6页
Phytohormone abscisic acid(ABA)plays vital roles in stress tolerance,while long-term overactivation of ABA signaling suppresses plant growth and development.However,the braking mechanism of ABA responses is not clear.... Phytohormone abscisic acid(ABA)plays vital roles in stress tolerance,while long-term overactivation of ABA signaling suppresses plant growth and development.However,the braking mechanism of ABA responses is not clear.Protein tyrosine sulfation catalyzed by tyrosylprotein sulfotransferase(TPST)is a critical post-translational modification.Through genetic screening,we identified a tpst mutant in Arabidopsis that was hypersensitive to ABA.In-depth analysis revealed that TPST could interact with and sulfate SnRK2.2/2.3/2.6,which accelerated their degradation and weakened the ABA signaling.Taken together,these findings uncovered a novel mechanism of desensitizing ABA responses via protein sulfation. 展开更多
关键词 ARABIDOPSIS aba signaling tyrosylprotein sulfotransferase SULFATION SnRK2.2/2.3/2.6
原文传递
Arabidopsis co-chaperonin CPN20 antagonizes Mg-chelatase H subunit to derepress ABA-responsive WRKY40 transcription repressor 被引量:11
18
作者 ZHANG XiaoFeng JIANG Tao +8 位作者 YU YongTao WU Zhen JIANG ShangChuan LU Kai FENG XiuJing LIANG Shan LU YanFen WANG XiaoFang ZHANG DaPeng 《Science China(Life Sciences)》 SCIE CAS 2014年第1期11-21,共11页
Our previous study demonstrated that a chloroplast co-chaperonin 20(CPN20),one of the interaction partners of the magnesium-protoporphyrin IX chelatase H subunit(CHLH/ABAR),negatively regulates ABA signaling at the sa... Our previous study demonstrated that a chloroplast co-chaperonin 20(CPN20),one of the interaction partners of the magnesium-protoporphyrin IX chelatase H subunit(CHLH/ABAR),negatively regulates ABA signaling at the same node with ABAR but upstream of WRKY40 transcription repressor in Arabidopsis thaliana.In the present experiment,we showed that ABA directly inhibits the ABAR-CPN20 interaction,and also represses expression of CPN20,which depends on ABAR.CPN20 inhibits ABAR-WRKY40 interaction by competitively binding to ABAR.ABAR downregulates,but CPN20 upregulates,WRKY40 expression.The cpn20-1 mutation induces downregulation of WRKY40,and suppresses the upregulated level of WRKY40 due to the cch mutation in the ABAR gene.ABA-induced repressive effect of the WRKY40 gene is strengthened by downregulation of CPN20 but reduced by upregulation of CPN20.Together with our previously reported genetic data,we provide evidence that CPN20 functions through antagonizing the ABAR-WRKY40 coupled pathway,and ABA relieves this pathway of repression by inhibiting the ABAR-CPN20 interaction to activate ABAR-WRKY40 interaction. 展开更多
关键词 co-chaperonin CPN20 Mg-chelatase H subunit WRKY40 aba signalling
原文传递
The Arabidopsis spliceosomal protein SmEb modulates ABA responses by maintaining proper alternative splicing of HAB1 被引量:2
19
作者 Yechun Hong Juanjuan Yao +3 位作者 Huazhong Shi Yunjuan Chen Jian-Kang Zhu Zhen Wang 《Stress Biology》 CAS 2021年第1期38-45,共8页
Abscisic acid(ABA)signaling is critical for seed germination and abiotic stress responses in terrestrial plants.PremRNA splicing is known to regulate ABA signaling.However,the involvement of canonical spliceosomal com... Abscisic acid(ABA)signaling is critical for seed germination and abiotic stress responses in terrestrial plants.PremRNA splicing is known to regulate ABA signaling.However,the involvement of canonical spliceosomal components in regulating ABA signaling is poorly understood.Here,we show that the spliceosome component Sm core protein SmEb plays an important role in ABA signaling.SmEb expression is up-regulated by ABA treatment,and analysis of Arabidopsis smeb mutant plants suggest that SmEb modulates the alternative splicing of the ABA signaling component HAB1 by enhancing the HAB1.1 splicing variant while repressing HAB1.2.Overexpression of HAB1.1 but not HAB1.2 rescues the ABA-hypersensitive phenotype of smeb mutants.Mutations in the transcription factor ABI3,4,or 5 also reduce the ABA hypersensitivity of smeb mutants during seed germination.Our results show that the spliceosomal component SmEb plays an important role in ABA regulation of seed germination and early seedling development. 展开更多
关键词 aba signaling Alternative splicing Cotyledon greening HAB1 SmEb
原文传递
拟南芥中与ABA信号途径相关的两个同源未知基因的研究
20
作者 杨笑玚 吴明杰 +4 位作者 王婷婷 蒋彦 李旭锋 GRILL E 杨毅 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期626-630,共5页
本研究主要在实验室前期筛选出的两个编码同源未知基因AB(AB025622)和AC(AC023628)所构建的拟南芥过量表达和抑制表达转基因植株基础上对转AB基因拟南芥的生理性状进行初步分析以及在转录水平上分AB、AC和ABI1、ABI2在ABA影响下其表达... 本研究主要在实验室前期筛选出的两个编码同源未知基因AB(AB025622)和AC(AC023628)所构建的拟南芥过量表达和抑制表达转基因植株基础上对转AB基因拟南芥的生理性状进行初步分析以及在转录水平上分AB、AC和ABI1、ABI2在ABA影响下其表达情况。研究证明AB基因的过量表达导致植株对ABA不敏感,失水率增加,而AB的抑制表达导致植株对ABA敏感,降低了植株的失水率。初步证实AB参与ABA信号传导.此外,通过RNA的半定量分析可知在转录水平上AB、AC和ABI1、ABI2的表达量都受ABA诱导变化,证明ABA对野生型拟南芥植株生理性状的影响与控制AB、AC和ABI1、ABI2内源表达量有密切联系. 展开更多
关键词 aba信号途径 酵母双杂交 半定量分析
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部