This paper presents the proof of several inequalities by using the technique introduced by Alexandroff, Bakelman, and Pucci to establish their ABP estimate. First,the author gives a new and simple proof of a lower bou...This paper presents the proof of several inequalities by using the technique introduced by Alexandroff, Bakelman, and Pucci to establish their ABP estimate. First,the author gives a new and simple proof of a lower bound of Berestycki, Nirenberg, and Varadhan concerning the principal eigenvalue of an elliptic operator with bounded measurable coefficients. The rest of the paper is a survey on the proofs of several isoperimetric and Sobolev inequalities using the ABP technique. This includes new proofs of the classical isoperimetric inequality, the Wulff isoperimetric inequality, and the Lions-Pacella isoperimetric inequality in convex cones. For this last inequality, the new proof was recently found by the author, Xavier Ros-Oton, and Joaquim Serra in a work where new Sobolev inequalities with weights came up by studying an open question raised by Haim Brezis.展开更多
We make a further advance concerning the maximum principle for second-order elliptic operators. We investigate in particular a geometric condition, first considered by Berestycki Nirenberg Varadhan, that seems to be n...We make a further advance concerning the maximum principle for second-order elliptic operators. We investigate in particular a geometric condition, first considered by Berestycki Nirenberg Varadhan, that seems to be natural in view of the application of the boundary weak Harnack inequality, on which our argument is based. Setting it free from some technical assumptions, apparently needed in earlier papers, we significantly enlarge the class of unbounded domains where the maximum principle holds, compatibly with the first-order term.展开更多
文摘This paper presents the proof of several inequalities by using the technique introduced by Alexandroff, Bakelman, and Pucci to establish their ABP estimate. First,the author gives a new and simple proof of a lower bound of Berestycki, Nirenberg, and Varadhan concerning the principal eigenvalue of an elliptic operator with bounded measurable coefficients. The rest of the paper is a survey on the proofs of several isoperimetric and Sobolev inequalities using the ABP technique. This includes new proofs of the classical isoperimetric inequality, the Wulff isoperimetric inequality, and the Lions-Pacella isoperimetric inequality in convex cones. For this last inequality, the new proof was recently found by the author, Xavier Ros-Oton, and Joaquim Serra in a work where new Sobolev inequalities with weights came up by studying an open question raised by Haim Brezis.
文摘We make a further advance concerning the maximum principle for second-order elliptic operators. We investigate in particular a geometric condition, first considered by Berestycki Nirenberg Varadhan, that seems to be natural in view of the application of the boundary weak Harnack inequality, on which our argument is based. Setting it free from some technical assumptions, apparently needed in earlier papers, we significantly enlarge the class of unbounded domains where the maximum principle holds, compatibly with the first-order term.