Surface modification of sericite by wet method was conducted with the addition of 1.0 % (w/w) silane. The resulting wetting contact angle and activity ratio of sericite were 130° and 98% respectively. Good pre-...Surface modification of sericite by wet method was conducted with the addition of 1.0 % (w/w) silane. The resulting wetting contact angle and activity ratio of sericite were 130° and 98% respectively. Good pre-evaluation indexes of oil value (40.8%) and dispersivity (14.0 mL) were obtained. When 30 % of sericite was filled into acrylonitrile butadiene styrene(ABS) plastic, the bending strength and tensile strength of the composite material were reduced by 7% and 14.3% in comparison to those of pure ABS plastic, while the rigidity was increased by 3 times, and the impact strength and breaking elongation were reduced significantly. The mechanism of surface modification was investigated and the configuration of silane coupling agent on the surface of sericite was given. Infrared (IR) spectroscopic analysis indicates that the adsorption of silane on the surface of sericite belongs to chemical adsorption.展开更多
The acrylonitrile-butadiene-styrene (ABS) surface was etched by dipping it into chromic acid-sulfuric acid containing a trace amount of palladium. The surface roughness, activity, and valence bond were characterized...The acrylonitrile-butadiene-styrene (ABS) surface was etched by dipping it into chromic acid-sulfuric acid containing a trace amount of palladium. The surface roughness, activity, and valence bond were characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The results showed that with the increase of Pd concentration in the etching solution the ABS surface roughness reduced. The ratio of O to C increases and forms a large amount of O=C?O functional groups by dipping into Pd contained etching solution, thus the amount of colloids palladium adsorption increases. The carboxyl group acts as the ad- sorption site for the Pd/Sn catalyst.展开更多
基金the National Eleventh-Five-Year Project of China(No.2006BAB12B01)
文摘Surface modification of sericite by wet method was conducted with the addition of 1.0 % (w/w) silane. The resulting wetting contact angle and activity ratio of sericite were 130° and 98% respectively. Good pre-evaluation indexes of oil value (40.8%) and dispersivity (14.0 mL) were obtained. When 30 % of sericite was filled into acrylonitrile butadiene styrene(ABS) plastic, the bending strength and tensile strength of the composite material were reduced by 7% and 14.3% in comparison to those of pure ABS plastic, while the rigidity was increased by 3 times, and the impact strength and breaking elongation were reduced significantly. The mechanism of surface modification was investigated and the configuration of silane coupling agent on the surface of sericite was given. Infrared (IR) spectroscopic analysis indicates that the adsorption of silane on the surface of sericite belongs to chemical adsorption.
基金the National Doctorial Research Foundation of China (No.20030213007).
文摘The acrylonitrile-butadiene-styrene (ABS) surface was etched by dipping it into chromic acid-sulfuric acid containing a trace amount of palladium. The surface roughness, activity, and valence bond were characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The results showed that with the increase of Pd concentration in the etching solution the ABS surface roughness reduced. The ratio of O to C increases and forms a large amount of O=C?O functional groups by dipping into Pd contained etching solution, thus the amount of colloids palladium adsorption increases. The carboxyl group acts as the ad- sorption site for the Pd/Sn catalyst.