In this work, transient electroluminescence (EL) (brightness-voltage waveform curve) was utilized to investigate the working mechanism of alternating-current biased organic light-emitting diodes (AC-OLEDs). In l...In this work, transient electroluminescence (EL) (brightness-voltage waveform curve) was utilized to investigate the working mechanism of alternating-current biased organic light-emitting diodes (AC-OLEDs). In lower frequency domain, injection potential barrier was the dominant effect to determine the luminescence intensity; with increased frequency, the influence of capacitance effect becomes dominant, which can be confirmed according to the investigations on stable EL of the AC-OLEDs. The results indicate that transient and stable EL can agree with each other perfectly. Besides, the stable EL reveals that the thinner device can take more effective capacitance effect.展开更多
文摘In this work, transient electroluminescence (EL) (brightness-voltage waveform curve) was utilized to investigate the working mechanism of alternating-current biased organic light-emitting diodes (AC-OLEDs). In lower frequency domain, injection potential barrier was the dominant effect to determine the luminescence intensity; with increased frequency, the influence of capacitance effect becomes dominant, which can be confirmed according to the investigations on stable EL of the AC-OLEDs. The results indicate that transient and stable EL can agree with each other perfectly. Besides, the stable EL reveals that the thinner device can take more effective capacitance effect.