期刊文献+
共找到391,861篇文章
< 1 2 250 >
每页显示 20 50 100
Carbon emission reduction:Contribution of photovoltaic power and practice in China 被引量:1
1
作者 Liang Wang Li-qiong Jia +2 位作者 Geng Xie Xi-jie Chen Yang Liu 《China Geology》 CAS CSCD 2024年第2期371-376,共6页
As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst... As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology. 展开更多
关键词 CONVERT power EMISSIONS
下载PDF
Traction power systems for electrified railways:evolution,state of the art,and future trends 被引量:1
2
作者 Haitao Hu Yunjiang Liu +4 位作者 Yong Li Zhengyou He Shibin Gao Xiaojuan Zhu Haidong Tao 《Railway Engineering Science》 EI 2024年第1期1-19,共19页
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ... Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy. 展开更多
关键词 Railway traction power system Future electrified railway Flexible continuous power supply Renewable energy Integrated energy system
下载PDF
A Novel Multiple DBC-staked units Package to Parallel More Chips for SiC Power Module 被引量:1
3
作者 Xiaoshuang Hui Puqi Ning +4 位作者 Tao Fan Yuhui Kang Kai Wang Yunhui Mei Guangyin Lei 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期72-79,共8页
Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple stake... Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint. 展开更多
关键词 Silicon carbide Electric vehicle power modules PacKAGE
下载PDF
Flexible linear clock-based distributed self-triggered active power-sharing secondary control of AC microgrids
4
作者 Yulin Chen Xing Huang +5 位作者 Guangxin Zhi Shaohua Yang Hongxun Hui Donglian Qi Yunfeng Yan Fengkai Gao 《Global Energy Interconnection》 EI CSCD 2024年第6期786-797,共12页
Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited comp... Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited computation and communication resources of the secondary controller.To enhance the efficiency of secondary control,we developed a novel distributed self-triggered active power-sharing control strategy by introducing the signum function and a flexible linear clock.Unlike continuous communication–based controllers,the proposed self-triggered distributed controller prompts distributed generators to perform control actions and share information with their neighbors only at specific time instants monitored by the linear clock.Therefore,this approach results in a significant reduction in both the computation and communication requirements.Moreover,this design naturally avoids Zeno behavior.Furthermore,a modified triggering condition was established to achieve further reductions in computation and communication.The simulation results confirmed that the proposed control scheme achieves distributed active power sharing with very few controller triggers,thereby substantially enhancing the efficacy of secondary control in MGs. 展开更多
关键词 active power sharing Distributed secondary control Self-triggered mechanism ac microgrid Control efficiency
下载PDF
Investigating Load Regulation Characteristics of a Wind-PV-Coal Storage Multi-Power Generation System
5
作者 Zhongping Liu Enhui Sun +3 位作者 Jiahao Shi Lei Zhang Qi Wang Jiali Dong 《Energy Engineering》 EI 2024年第4期913-932,共20页
There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu... There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode. 展开更多
关键词 Wind power coal-fired power PV multi-power generation system lithium-iron phosphate energy storage system
下载PDF
The Correlation between the Power Quality Indicators and Entropy Production Characteristics of Wind Power+Energy Storage Systems
6
作者 Caifeng Wen Boxin Zhang +3 位作者 Yuanjun Dai Wenxin Wang Wanbing Xie Qian Du 《Energy Engineering》 EI 2024年第10期2961-2979,共19页
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e... Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production. 展开更多
关键词 Wind power system entropy production system losses power quality indexes battery energy storage
下载PDF
Optimal ConfigurationMethod forMulti-Type Reactive Power Compensation Devices in Regional Power Grid with High Proportion ofWind Power
7
作者 Ying Wang Jie Dang +2 位作者 Cangbi Ding Chenyi Zheng Yi Tang 《Energy Engineering》 EI 2024年第11期3331-3353,共23页
As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wi... As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wind power(WP).Due to the randomness of WP output,higher requirements are put forward for the voltage stability of each node of the regional power grid,and various reactive power compensation devices(RPCDs)need to be rationally configured to meet the stable operation requirements of the system.This paper proposes an optimal configuration method for multi-type RPCDs in regional power grids with a high proportion of WP.The RPCDs are located according to the proposed static voltage stability index(VSI)and dynamicVSI based on dynamic voltage drop area,and the optimal configuration model of RPCDs is constructed with the lowest construction cost as the objective function to determine the installed capacity of various RPCDs.Finally,the corresponding regional power grid model for intensive access to WFs is constructed on the simulation platform to verify the effectiveness of the proposed method. 展开更多
关键词 Wind power reactive power compensation device optimal configuration model voltage stability
下载PDF
A Two-Layer Active Power Optimization and Coordinated Control for Regional Power Grid Partitioning to Promote Distributed Renewable Energy Consumption
8
作者 Wentao Li Jiantao Liu +3 位作者 Yudun Li GuoxinMing Kaifeng Zhang Kun Yuan 《Energy Engineering》 EI 2024年第9期2479-2503,共25页
With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener... With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid. 展开更多
关键词 Renewable energy consumption active power optimization power grid partitioning industrial flexible loads line over-limit
下载PDF
Investigation of Power Density Amplification in Stacked Triboelectric Nanogenerators
9
作者 Fan Shen Qin Zhang +5 位作者 Hengyu Guo Chen Cao Ying Gong Junlei Wang Yan Peng Zhongjie Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期368-375,共8页
In engineering practice,the output performance of contact separation TENGs(CS-TENGs)increases with the increase of tribo-pair area,which includes increasing the size of single layer CS-TENGs(SCS-TENGs)or the number of... In engineering practice,the output performance of contact separation TENGs(CS-TENGs)increases with the increase of tribo-pair area,which includes increasing the size of single layer CS-TENGs(SCS-TENGs)or the number of units(zigzag TENGs).However,such two strategies show significant differences in output power and power density.In this study,to seek a universal CS-TENG design solution,the output performance of a SCS-TENG and a zigzag TENG(Z-TENG)is systematically compared,including voltage,current,transferred charge,instantaneous power density,and charging power density.The relationship between contact area and output voltages is explored,and the output voltage equation is fitted.The experimental results reveal that SCS-TENGs yield better performance than Z-TENGs in terms of voltage,power,and power density under the same total contact area.Z-TENGs show energy loss during the transfer of mechanical energy,and such loss is aggravated by the increasing number of units.The instantaneous peak power of the SCS-TENG is up to 22 times that of the Z-TENG(45 cm^(2)).Furthermore,the power density of capacitor charging of SCS-TENGs is 131%of that of Z-TENGs,which are relatively close.Z-TENG is a feasible alternative when the working space is limited. 展开更多
关键词 contact separation power density triboelectric nanogenerators ZIGZAG
下载PDF
Modified multiple-component scattering power decomposition for PolSAR data based on eigenspace of coherency matrix
10
作者 ZHANG Shuang WANG Lu WANG Wen-Qing 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期572-581,共10页
A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of ... A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of the coherency matrix are used to modify the scattering models.Secondly,the entropy and anisotro⁃py of targets are used to improve the volume scattering power.With the guarantee of high double-bounce scatter⁃ing power in the urban areas,the proposed algorithm effectively improves the volume scattering power of vegeta⁃tion areas.The efficacy of the modified multiple-component scattering power decomposition is validated using ac⁃tual AIRSAR PolSAR data.The scattering power obtained through decomposing the original coherency matrix and the coherency matrix after orientation angle compensation is compared with three algorithms.Results from the experiment demonstrate that the proposed decomposition yields more effective scattering power for different PolSAR data sets. 展开更多
关键词 PolSAR data model-based decomposition eigenvalue decomposition scattering power
下载PDF
Capacitorless Solid-state Power Filter for Single-phase DC-AC Converters
11
作者 Haitham Kanakri Euzeli C.Dos Santos 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期367-377,共11页
Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an induct... Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an inductor-capacitor-inductor(LCL)T-circuit.However,capacitors are susceptible to wear-out mechanisms and failure modes.Nevertheless,the necessity for monitoring and regular replacement adds to an elevated cost of ownership for such systems.The utilization of an active output power filter can be used to diminish the dimensions of the LC filter and the electrolytic dc-link capacitor,even though the inclusion of capacitors remains an indispensable part of the system.This paper introduces capacitorless solid-state power filter(SSPF)for single-phase dc-ac converters.The proposed configuration is capable of generating a sinusoidal ac voltage without relying on capacitors.The proposed filter,composed of a planar transformer and an H-bridge converter operating at high frequency,injects voltage harmonics to attain a sinusoidal output voltage.The design parameters of the planar transformer are incorporated,and the impact of magnetizing and leakage inductances on the operation of the SSPF is illustrated.Theoretical analysis,supported by simulation and experimental results,are provided for a design example for a single-phase system.The total harmonic distortion observed in the output voltage is well below the IEEE 519 standard.The system operation is experimentally tested under both steady-state and dynamic conditions.A comparison with existing technology is presented,demonstrating that the proposed topology reduces the passive components used for filtering. 展开更多
关键词 Solid-state power filter(SSPF) Capacitorless topology active output power filter(AOF) Planar transformer Electrolytic capacitor LIFETIME Wear-out mechanisms
下载PDF
Transient AC Overvoltage Suppression Orientated Reactive Power Control of the Wind Turbine in the LCC-HVDC Sending Grid
12
作者 Bo Pang Xiao Jin +4 位作者 Quanwang Zhang Yi Tang Kai Liao Jianwei Yang Zhengyou He 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期152-161,共10页
High-voltage direct current(HVDC) transmission is a crucial way to solve the reverse distribution of clean energy and loads. The line commutated converter-based HVDC(LCCHVDC) has become a vital structure for HVDC due ... High-voltage direct current(HVDC) transmission is a crucial way to solve the reverse distribution of clean energy and loads. The line commutated converter-based HVDC(LCCHVDC) has become a vital structure for HVDC due to its high technological maturity and economic advantages. During the DC fault of LCC-HVDC, such as commutation failure, the reactive power regulation of the AC grid always lags the DC control process, causing overvoltage in the AC sending grid, which brings off-grid risk to the wind power generation based on power electronic devices. Nevertheless, considering that wind turbine generators have fast and flexible reactive power control capability, optimizing the reactive power control of wind turbines to participate in the transient overvoltage suppression of the sending grid not only improves the operational safety at the equipment level but also enhances the voltage stability of the system. This paper firstly analyses the impact of wind turbine's reactive power on AC transient overvoltage. Then, it proposes an improved voltage-reactive power control strategy, which contains a reactive power control delay compensation and a power command optimization based on the voltage time series prediction. The delay compensation is used to reduce the contribution of the untimely reactive power of wind turbines on transient overvoltage, and the power command optimization enables wind turbines to have the ability to regulate transient overvoltage, leading to the variation of AC voltage, thus suppressing the transient overvoltage. Finally, the effectiveness and feasibility of the proposed method are verified in a ±800kV/5000MW LCC-HVDC sending grid model based on MATLAB/Simulink. 展开更多
关键词 Commutation failure LCC-HVDC Transient overvoltage Wind power
下载PDF
Optimizing the power conversion processes in diluted donor/acceptor heterojunctions towards 19.4%efficiency all-polymer solar cells
13
作者 Liang Wang Chen Chen +11 位作者 Zirui Gan Chenhao Liu Chuanhang Guo Weiyi Xia Wei Sun Jingchao Cheng Yuandong Sun Jing Zhou Zexin Chen Dan Liu Wei Li Tao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期345-350,共6页
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure... All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device. 展开更多
关键词 All-polymer solar cells power conversion efficiency Structural order Charge generation
下载PDF
Stackelberg Game for Wireless Powered and Backscattering Enabled Sensor Networks
14
作者 Lyu Bin Cao Yi +2 位作者 Wang Shuai Guo Haiyan Hao Chengyao 《China Communications》 SCIE CSCD 2024年第3期189-204,共16页
This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable th... This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively. 展开更多
关键词 backscatter communication energy interaction stackelberg game wireless powered sensor network
下载PDF
Wireless Power Supply Based on MNG-MNZ Metamaterial for Cardiac Pacemakers
15
作者 Weihua Chen Jingtao Jia +2 位作者 Xiaoheng Yan Yuhang Song Jiayi Li 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期103-112,共10页
To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-ne... To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-negative(MNG) and mu-nearzero(MNZ) metamaterials. First, a hybrid metamaterial consisted of central MNG unit for magnetic field concentration and surrounding MNZ units for magnetic leakage shielding was established by theoretical calculation. Afterwards, the magnetic field distribution of wireless power supply system with MNG-MNZ metamaterial slab was acquired via finite element simulation and verified to be better than the distribution with conventional MNG slab deployed. Finally, an experimental platform of wireless power supply system was established with which power transfer experiment and system temperature rise experiment were conducted.Simulation and experimental results showed that the power transfer efficiency was improved from 44.44%,19.42%, 8.63% and 6.19% to 55.77%, 62.39%, 20.81%and 14.52% at 9.6 mm, 20 mm, 30 mm and 50 mm,respectively. The maximum SAR acquired by SAR simulation under human body environment was-7.14 dbm and maximum reduction of the magnetic field strength around the receiving coil was 2.82 A/m. The maximum temperature rise during 30min charging test was 3.85℃,and the safety requirements of human bodies were met. 展开更多
关键词 Cardiac pacemaker MNG metamaterial MNZ metamaterial Wireless power supply system
下载PDF
Low-frequency oscillation of train-network system considering traction power supply mode
16
作者 Yuchen Liu Xiaoqin Lyu +1 位作者 Mingyuan Chang Qiqi Yang 《Railway Engineering Science》 EI 2024年第2期244-256,共13页
The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra... The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink. 展开更多
关键词 Low-frequency oscillation Train-network system Modal analysis Bilateral power supply Participation factor
下载PDF
A Simple and Effective Surface Defect Detection Method of Power Line Insulators for Difficult Small Objects
17
作者 Xiao Lu Chengling Jiang +2 位作者 Zhoujun Ma Haitao Li Yuexin Liu 《Computers, Materials & Continua》 SCIE EI 2024年第4期373-390,共18页
Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable... Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects. 展开更多
关键词 Insulator defect detection small object power line deformable attention mechanism
下载PDF
Efficient Digital Twin Placement for Blockchain-Empowered Wireless Computing Power Network
18
作者 Wei Wu Liang Yu +2 位作者 Liping Yang Yadong Zhang Peng Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期587-603,共17页
As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and... As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and untrusted device terminals.Blockchain,as a shared,immutable distributed ledger,provides a secure resource management solution for WCPN.However,integrating blockchain into WCPN faces challenges like device heterogeneity,monitoring communication states,and dynamic network nature.Whereas Digital Twins(DT)can accurately maintain digital models of physical entities through real-time data updates and self-learning,enabling continuous optimization of WCPN,improving synchronization performance,ensuring real-time accuracy,and supporting smooth operation of WCPN services.In this paper,we propose a DT for blockchain-empowered WCPN architecture that guarantees real-time data transmission between physical entities and digital models.We adopt an enumeration-based optimal placement algorithm(EOPA)and an improved simulated annealing-based near-optimal placement algorithm(ISAPA)to achieve minimum average DT synchronization latency under the constraint of DT error.Numerical results show that the proposed solution in this paper outperforms benchmarks in terms of average synchronization latency. 展开更多
关键词 Wireless computing power network blockchain digital twin placement minimum synchronization latency
下载PDF
Proposal of a Deuterium-Deuterium Fusion Reactor Intended for a Large Power Plant
19
作者 Patrick Lindecker 《World Journal of Nuclear Science and Technology》 CAS 2024年第1期1-58,共58页
This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is consid... This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is considered for a power plant. However, as shown in this article, even if a D-D reactor would be necessarily much bigger than a D-T reactor due to the much weaker fusion reactivity of the D-D fusion compared to the D-T fusion, a D-D reactor size would remain under an acceptable size. Indeed, a D-D power plant would be necessarily large and powerful, i.e. the net electric power would be equal to a minimum of 1.2 GWe and preferably above 10 GWe. A D-D reactor would be less complex than a D-T reactor as it is not necessary to obtain Tritium from the reactor itself. It is proposed the same type of reactor yet proposed by the author in a previous article, i.e. a Stellarator “racetrack” magnetic loop. The working of this reactor is continuous. It is reminded that the Deuterium is relatively abundant on the sea water, and so it constitutes an almost inexhaustible source of energy. Thanks to secondary fusions (D-T and D-He3) which both occur at an appreciable level above 100 keV, plasma can stabilize around such high equilibrium energy (i.e. between 100 and 150 keV). The mechanical gain (Q) of such reactor increases with the internal pipe radius, up to 4.5 m. A radius of 4.5 m permits a mechanical gain (Q) of about 17 which thanks to a modern thermo-dynamical conversion would lead to convert about 21% of the thermal power issued from the D-D reactor in a net electric power of 20 GWe. The goal of the article is to create a physical model of the D-D reactor so as to estimate this one without the need of a simulator and finally to estimate the dimensions, power and yield of such D-D reactor for different net electrical powers. The difficulties of the modeling of such reactor are listed in this article and would certainly be applicable to a future D-He3 reactor, if any. 展开更多
关键词 Fusion Reactor Deuterium-Deuterium Reactor Catalyzed D-D Colliding Beams Stellarator Reactor power Plant
下载PDF
Reliability of DC-link capacitor in pulsed power supply for accelerator magnet
20
作者 Jie Wang Da-Qing Gao +2 位作者 Wan-Zeng Shen Hong-Bin Yan Li-Jun Mao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第9期28-40,共13页
Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an ... Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an analytical method for the capacitor current on the H-bridge topology side,the root-mean-square value of the capacitor current was calculated,which helps in selecting the DC-link capacitors.The proposed method solves this problem quickly and with high accuracy.The current reconstruction of the DC-link capacitor is proposed to avoid structural damage in the capacitor’s current measurement,and the capacitor’s hotspot temperature and temperature rise are calculated using the FFT transform.The test results showed that the error between the calculated and measured temperature increases was within 1.5℃.Finally,the lifetime of DC-link capacitors was predicted based on Monte Carlo analysis.The proposed method can evaluate the reliability of DC-link capacitors in a non-isolated switching pulsed power supply for accelerators and is also applicable to film capacitors. 展开更多
关键词 Aluminum electrolytic capacitor DC-link current DC–DC power converter Hotspot temperature
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部