In recent years,the application of sensorless AC motor drives is expanding in areas ranging from industrial applications to household electrical appliances.As is well known,the advantages of sensorless motor drives in...In recent years,the application of sensorless AC motor drives is expanding in areas ranging from industrial applications to household electrical appliances.As is well known,the advantages of sensorless motor drives include lower cost,increased reliability,reduced hardware complexity,better noise immunity,and less maintenance requirements.With the development of modern industrial automation,more advanced sensorless control strategies are needed to meet the requirements of applications.For sensorless motor drives at low-and zero-speed operation,inverter nonlinearities and motor parameter variation have significant impact on the stability of control system.Meanwhile,high observer’s bandwidth is required in high-speed region.This paper introduces the state of art of recent progress in sensorless AC motor drives.In addition,this paper presents the sensorless control strategies we investigated for practical industrial and household applications.Both advanced sensorless drives of induction motor(IM)and permanent magnet synchronous motor(PMSM)are presented in this paper.展开更多
This paper presents a backstepping control method for speed sensorless permanent magnet synchronous motor based on slide model observer. First, a comprehensive dynamical model of the permanent magnet synchronous motor...This paper presents a backstepping control method for speed sensorless permanent magnet synchronous motor based on slide model observer. First, a comprehensive dynamical model of the permanent magnet synchronous motor(PMSM) in d-q frame and its space-state equation are established. The slide model control method is used to estimate the electromotive force of PMSM under static frame, while the position of rotor and its actual speed are estimated by using phase loop lock(PLL) method. Next,using Lyapunov stability theorem, the asymptotical stability condition of the slide model observer is presented. Furthermore, based on the backstepping control theory, the PMSM rotor speed and current tracking backstepping controllers are designed, because such controllers display excellent speed tracking and anti-disturbance performance. Finally, Matlab simulation results show that the slide model observer can not only estimate the rotor position and speed of the PMSM accurately, but also ensure the asymptotical stability of the system and effective adjustment of rotor speed and current.展开更多
基金This work was supported by the Research Fund for the National Key Research and Development Program(2016YFE0102800).
文摘In recent years,the application of sensorless AC motor drives is expanding in areas ranging from industrial applications to household electrical appliances.As is well known,the advantages of sensorless motor drives include lower cost,increased reliability,reduced hardware complexity,better noise immunity,and less maintenance requirements.With the development of modern industrial automation,more advanced sensorless control strategies are needed to meet the requirements of applications.For sensorless motor drives at low-and zero-speed operation,inverter nonlinearities and motor parameter variation have significant impact on the stability of control system.Meanwhile,high observer’s bandwidth is required in high-speed region.This paper introduces the state of art of recent progress in sensorless AC motor drives.In addition,this paper presents the sensorless control strategies we investigated for practical industrial and household applications.Both advanced sensorless drives of induction motor(IM)and permanent magnet synchronous motor(PMSM)are presented in this paper.
基金supported by National Natural Science Foundation of China(Nos.61104072 and 11271309)
文摘This paper presents a backstepping control method for speed sensorless permanent magnet synchronous motor based on slide model observer. First, a comprehensive dynamical model of the permanent magnet synchronous motor(PMSM) in d-q frame and its space-state equation are established. The slide model control method is used to estimate the electromotive force of PMSM under static frame, while the position of rotor and its actual speed are estimated by using phase loop lock(PLL) method. Next,using Lyapunov stability theorem, the asymptotical stability condition of the slide model observer is presented. Furthermore, based on the backstepping control theory, the PMSM rotor speed and current tracking backstepping controllers are designed, because such controllers display excellent speed tracking and anti-disturbance performance. Finally, Matlab simulation results show that the slide model observer can not only estimate the rotor position and speed of the PMSM accurately, but also ensure the asymptotical stability of the system and effective adjustment of rotor speed and current.